L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)5-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)10-s + (−0.5 + 0.363i)13-s + (−0.809 + 0.587i)16-s + (0.5 − 1.53i)17-s − 20-s + (−0.809 − 0.587i)25-s − 0.618·26-s + (0.5 + 1.53i)29-s − 32-s + (1.30 − 0.951i)34-s + (1.30 − 0.951i)37-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)5-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)10-s + (−0.5 + 0.363i)13-s + (−0.809 + 0.587i)16-s + (0.5 − 1.53i)17-s − 20-s + (−0.809 − 0.587i)25-s − 0.618·26-s + (0.5 + 1.53i)29-s − 32-s + (1.30 − 0.951i)34-s + (1.30 − 0.951i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.187−0.982i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.187−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.187−0.982i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), −0.187−0.982i)
|
Particular Values
L(21) |
≈ |
1.423963161 |
L(21) |
≈ |
1.423963161 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1 |
| 5 | 1+(0.309−0.951i)T |
good | 7 | 1−T2 |
| 11 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
| 17 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 19 | 1+(0.809+0.587i)T2 |
| 23 | 1+(−0.309−0.951i)T2 |
| 29 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 41 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 43 | 1−T2 |
| 47 | 1+(0.809−0.587i)T2 |
| 53 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
| 59 | 1+(−0.309+0.951i)T2 |
| 61 | 1+(0.5+0.363i)T+(0.309+0.951i)T2 |
| 67 | 1+(0.809+0.587i)T2 |
| 71 | 1+(0.809−0.587i)T2 |
| 73 | 1+(0.5+0.363i)T+(0.309+0.951i)T2 |
| 79 | 1+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 97 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76486800999752715139386487573, −9.683651154086042175510409792962, −8.735601538043212685785742143112, −7.51037078062743494332919133313, −7.24157482103488924726725352968, −6.29984054906616827132096526159, −5.30764636196956021626146305528, −4.37427395437747443119762081843, −3.28030407126397008424340129123, −2.47470684055183168209442359936,
1.23149490184701595948393562657, 2.61240193002872695376815841275, 3.91436252679634624073741527626, 4.55234985015706056675924116951, 5.59659764838152895583636657785, 6.26717098598768207066738525179, 7.63171877349717513785500929750, 8.385713789739642149276021526797, 9.500281353636004488824856649603, 10.13110540383176579835939850246