L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.965 + 0.258i)3-s + (0.866 + 0.499i)4-s − 6-s + (0.448 − 1.67i)7-s + (0.707 + 0.707i)8-s + (0.866 − 0.499i)9-s + (−0.965 − 0.258i)12-s + (0.866 − 1.50i)14-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)18-s + 1.73i·21-s + (−0.965 + 0.258i)23-s + (−0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (1.22 − 1.22i)28-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.965 + 0.258i)3-s + (0.866 + 0.499i)4-s − 6-s + (0.448 − 1.67i)7-s + (0.707 + 0.707i)8-s + (0.866 − 0.499i)9-s + (−0.965 − 0.258i)12-s + (0.866 − 1.50i)14-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)18-s + 1.73i·21-s + (−0.965 + 0.258i)23-s + (−0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (1.22 − 1.22i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.415411283\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.415411283\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.448 + 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.67 - 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + 1.73T + T^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61024084148005872853728023029, −9.954811926163750646723557801932, −8.406894277197425139893893103049, −7.32072047898068679310585424246, −6.92197437504010791210308431352, −5.90615777641067929495360424540, −4.93889115701135289223646000387, −4.26439175718954740147527536408, −3.44535657682999888105332903457, −1.48653732501967385173032576407,
1.75272355592103926429228939309, 2.71510360452837235332501017325, 4.28726665817755760811856770182, 5.08773990719179494790862416046, 5.91054678387368203948835812751, 6.35007321993085162908791825440, 7.56171563207534452048257380197, 8.518442638723591320252741323745, 9.771875878425240809348035258557, 10.49820389654922155896267784016