L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.965 + 0.258i)3-s + (0.866 + 0.499i)4-s − 6-s + (0.448 − 1.67i)7-s + (0.707 + 0.707i)8-s + (0.866 − 0.499i)9-s + (−0.965 − 0.258i)12-s + (0.866 − 1.50i)14-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)18-s + 1.73i·21-s + (−0.965 + 0.258i)23-s + (−0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (1.22 − 1.22i)28-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.965 + 0.258i)3-s + (0.866 + 0.499i)4-s − 6-s + (0.448 − 1.67i)7-s + (0.707 + 0.707i)8-s + (0.866 − 0.499i)9-s + (−0.965 − 0.258i)12-s + (0.866 − 1.50i)14-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)18-s + 1.73i·21-s + (−0.965 + 0.258i)23-s + (−0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (1.22 − 1.22i)28-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.979−0.203i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.979−0.203i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.979−0.203i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(743,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.979−0.203i)
|
Particular Values
L(21) |
≈ |
1.415411283 |
L(21) |
≈ |
1.415411283 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 3 | 1+(0.965−0.258i)T |
| 5 | 1 |
good | 7 | 1+(−0.448+1.67i)T+(−0.866−0.5i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(0.866−0.5i)T2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+(0.965−0.258i)T+(0.866−0.5i)T2 |
| 29 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−iT2 |
| 41 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 43 | 1+(0.866+0.5i)T2 |
| 47 | 1+(−0.965−0.258i)T+(0.866+0.5i)T2 |
| 53 | 1−iT2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(1.67−0.448i)T+(0.866−0.5i)T2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1+(0.258−0.965i)T+(−0.866−0.5i)T2 |
| 89 | 1+1.73T+T2 |
| 97 | 1+(0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61024084148005872853728023029, −9.954811926163750646723557801932, −8.406894277197425139893893103049, −7.32072047898068679310585424246, −6.92197437504010791210308431352, −5.90615777641067929495360424540, −4.93889115701135289223646000387, −4.26439175718954740147527536408, −3.44535657682999888105332903457, −1.48653732501967385173032576407,
1.75272355592103926429228939309, 2.71510360452837235332501017325, 4.28726665817755760811856770182, 5.08773990719179494790862416046, 5.91054678387368203948835812751, 6.35007321993085162908791825440, 7.56171563207534452048257380197, 8.518442638723591320252741323745, 9.771875878425240809348035258557, 10.49820389654922155896267784016