L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.258 − 0.965i)3-s + (−0.866 + 0.499i)4-s − 6-s + (1.67 − 0.448i)7-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.866 − 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)18-s − 1.73i·21-s + (0.258 − 0.965i)23-s + (0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (−1.22 + 1.22i)28-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.258 − 0.965i)3-s + (−0.866 + 0.499i)4-s − 6-s + (1.67 − 0.448i)7-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.866 − 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)18-s − 1.73i·21-s + (0.258 − 0.965i)23-s + (0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (−1.22 + 1.22i)28-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.619+0.784i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.619+0.784i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.619+0.784i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(443,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), −0.619+0.784i)
|
Particular Values
L(21) |
≈ |
0.9947326415 |
L(21) |
≈ |
0.9947326415 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1+(−0.258+0.965i)T |
| 5 | 1 |
good | 7 | 1+(−1.67+0.448i)T+(0.866−0.5i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(−0.866−0.5i)T2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 29 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−iT2 |
| 41 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 43 | 1+(−0.866+0.5i)T2 |
| 47 | 1+(0.258+0.965i)T+(−0.866+0.5i)T2 |
| 53 | 1−iT2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.448−1.67i)T+(−0.866−0.5i)T2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1+(−0.5−0.866i)T2 |
| 83 | 1+(−0.965+0.258i)T+(0.866−0.5i)T2 |
| 89 | 1−1.73T+T2 |
| 97 | 1+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24769090655272555788383931732, −8.934600161427883444817444426501, −8.447606816627508189767210083192, −7.69561770967871707850124330363, −6.93077021946505671280480442735, −5.40739762224978295849964234291, −4.56676315763756468429961677014, −3.34919362524968072177451099687, −2.09737856918546255331902039154, −1.25355587885700000831095309657,
1.91623440393042965809613716230, 3.68245633247113037934359810588, 4.72622105173765869168073841621, 5.24293942249888439948333190860, 6.13099296937079081101371289858, 7.62022865433085171003735629871, 8.028713959023576754895725418429, 8.910079631423548087992266442669, 9.492387051047927492376550481426, 10.47755778289601806030086640876