L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.258 − 0.965i)3-s + (−0.866 + 0.499i)4-s − 6-s + (1.67 − 0.448i)7-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.866 − 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)18-s − 1.73i·21-s + (0.258 − 0.965i)23-s + (0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (−1.22 + 1.22i)28-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.258 − 0.965i)3-s + (−0.866 + 0.499i)4-s − 6-s + (1.67 − 0.448i)7-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.866 − 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)18-s − 1.73i·21-s + (0.258 − 0.965i)23-s + (0.866 − 0.5i)24-s + (−0.707 + 0.707i)27-s + (−1.22 + 1.22i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.619 + 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.619 + 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9947326415\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9947326415\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.67 + 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 - 1.73T + T^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24769090655272555788383931732, −8.934600161427883444817444426501, −8.447606816627508189767210083192, −7.69561770967871707850124330363, −6.93077021946505671280480442735, −5.40739762224978295849964234291, −4.56676315763756468429961677014, −3.34919362524968072177451099687, −2.09737856918546255331902039154, −1.25355587885700000831095309657,
1.91623440393042965809613716230, 3.68245633247113037934359810588, 4.72622105173765869168073841621, 5.24293942249888439948333190860, 6.13099296937079081101371289858, 7.62022865433085171003735629871, 8.028713959023576754895725418429, 8.910079631423548087992266442669, 9.492387051047927492376550481426, 10.47755778289601806030086640876