L(s) = 1 | + (0.453 + 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.156 + 0.987i)5-s + (−0.987 − 0.156i)8-s + (−0.951 + 0.309i)10-s + (0.278 + 0.142i)13-s + (−0.309 − 0.951i)16-s + (−0.297 + 1.87i)17-s + (−0.707 − 0.707i)20-s + (−0.951 − 0.309i)25-s + 0.312i·26-s + (−0.734 − 0.533i)29-s + (0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 − 1.58i)37-s + ⋯ |
L(s) = 1 | + (0.453 + 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.156 + 0.987i)5-s + (−0.987 − 0.156i)8-s + (−0.951 + 0.309i)10-s + (0.278 + 0.142i)13-s + (−0.309 − 0.951i)16-s + (−0.297 + 1.87i)17-s + (−0.707 − 0.707i)20-s + (−0.951 − 0.309i)25-s + 0.312i·26-s + (−0.734 − 0.533i)29-s + (0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 − 1.58i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.762 - 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.762 - 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.064468794\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.064468794\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.453 - 0.891i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.156 - 0.987i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.278 - 0.142i)T + (0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (0.297 - 1.87i)T + (-0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (0.734 + 0.533i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 1.58i)T + (-0.587 - 0.809i)T^{2} \) |
| 41 | \( 1 + (-1.87 + 0.610i)T + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (-0.183 - 1.16i)T + (-0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.896 - 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.550 + 1.69i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.896i)T + (-0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77715620642285723043289191784, −9.677549995403535994008589934281, −8.775924941422143080629292112353, −7.84908334251719834592495512030, −7.25636241112901354279208129536, −6.15938622320798448766860038813, −5.84006726057176150472361588747, −4.25822353329832922846133460837, −3.69847492338357884506650748840, −2.37899446072060370362761870870,
0.968637266781333851888623831607, 2.42427285718060389579826026736, 3.59585463147861824728990141378, 4.67867346131308493841329757364, 5.21980349838940910140709753271, 6.29509474576031046504658309863, 7.55470586932254124357804731271, 8.602916110938932053267267472698, 9.336045545715528348276387935845, 9.897966698847325220363718328858