L(s) = 1 | + (0.453 + 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.156 + 0.987i)5-s + (−0.987 − 0.156i)8-s + (−0.951 + 0.309i)10-s + (0.278 + 0.142i)13-s + (−0.309 − 0.951i)16-s + (−0.297 + 1.87i)17-s + (−0.707 − 0.707i)20-s + (−0.951 − 0.309i)25-s + 0.312i·26-s + (−0.734 − 0.533i)29-s + (0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 − 1.58i)37-s + ⋯ |
L(s) = 1 | + (0.453 + 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.156 + 0.987i)5-s + (−0.987 − 0.156i)8-s + (−0.951 + 0.309i)10-s + (0.278 + 0.142i)13-s + (−0.309 − 0.951i)16-s + (−0.297 + 1.87i)17-s + (−0.707 − 0.707i)20-s + (−0.951 − 0.309i)25-s + 0.312i·26-s + (−0.734 − 0.533i)29-s + (0.707 − 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 − 1.58i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.762−0.647i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.762−0.647i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.762−0.647i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(647,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), −0.762−0.647i)
|
Particular Values
L(21) |
≈ |
1.064468794 |
L(21) |
≈ |
1.064468794 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.453−0.891i)T |
| 3 | 1 |
| 5 | 1+(0.156−0.987i)T |
good | 7 | 1−iT2 |
| 11 | 1+(−0.809−0.587i)T2 |
| 13 | 1+(−0.278−0.142i)T+(0.587+0.809i)T2 |
| 17 | 1+(0.297−1.87i)T+(−0.951−0.309i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1+(−0.587+0.809i)T2 |
| 29 | 1+(0.734+0.533i)T+(0.309+0.951i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(−0.809+1.58i)T+(−0.587−0.809i)T2 |
| 41 | 1+(−1.87+0.610i)T+(0.809−0.587i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.951+0.309i)T2 |
| 53 | 1+(−0.183−1.16i)T+(−0.951+0.309i)T2 |
| 59 | 1+(0.809−0.587i)T2 |
| 61 | 1+(−0.363+1.11i)T+(−0.809−0.587i)T2 |
| 67 | 1+(−0.951−0.309i)T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(−0.896−1.76i)T+(−0.587+0.809i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(−0.951−0.309i)T2 |
| 89 | 1+(−0.550+1.69i)T+(−0.809−0.587i)T2 |
| 97 | 1+(−0.142−0.896i)T+(−0.951+0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77715620642285723043289191784, −9.677549995403535994008589934281, −8.775924941422143080629292112353, −7.84908334251719834592495512030, −7.25636241112901354279208129536, −6.15938622320798448766860038813, −5.84006726057176150472361588747, −4.25822353329832922846133460837, −3.69847492338357884506650748840, −2.37899446072060370362761870870,
0.968637266781333851888623831607, 2.42427285718060389579826026736, 3.59585463147861824728990141378, 4.67867346131308493841329757364, 5.21980349838940910140709753271, 6.29509474576031046504658309863, 7.55470586932254124357804731271, 8.602916110938932053267267472698, 9.336045545715528348276387935845, 9.897966698847325220363718328858