L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)8-s + (1 − i)13-s − 1.00·16-s + 1.41i·26-s + 1.41·29-s + (0.707 − 0.707i)32-s + (1 + i)37-s − 1.41i·41-s + i·49-s + (−1.00 − 1.00i)52-s + (−1.00 + 1.00i)58-s + 1.00i·64-s + (−1 + i)73-s − 1.41·74-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)8-s + (1 − i)13-s − 1.00·16-s + 1.41i·26-s + 1.41·29-s + (0.707 − 0.707i)32-s + (1 + i)37-s − 1.41i·41-s + i·49-s + (−1.00 − 1.00i)52-s + (−1.00 + 1.00i)58-s + 1.00i·64-s + (−1 + i)73-s − 1.41·74-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.920−0.391i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.920−0.391i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.920−0.391i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.920−0.391i)
|
Particular Values
L(21) |
≈ |
0.7380269837 |
L(21) |
≈ |
0.7380269837 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1+i)T−iT2 |
| 17 | 1−iT2 |
| 19 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1−1.41T+T2 |
| 31 | 1−T2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1+1.41iT−T2 |
| 43 | 1+iT2 |
| 47 | 1+iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1+T2 |
| 83 | 1−iT2 |
| 89 | 1+1.41T+T2 |
| 97 | 1+(1+i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31306200753245864371643572220, −9.438723652618452412335122686870, −8.503013309407695348192527299584, −8.023245722412576788004270925851, −7.00046957759112566052959720995, −6.14777995842846822443576016168, −5.40395388392271782895369443928, −4.27499228808693724421674533876, −2.81387087182950764640514526611, −1.17460419426996029119861987527,
1.35560445489355166254832841367, 2.62922627588755500792718818633, 3.78105983815928603619611147719, 4.64550398783395833253484122584, 6.15759558850442512729912174432, 6.96567193406411933816533276834, 8.008155191505087720301018702208, 8.703023568523237304613196399376, 9.445698443152276969134315994917, 10.24303806571410968256964277428