L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)8-s + (1 − i)13-s − 1.00·16-s + 1.41i·26-s + 1.41·29-s + (0.707 − 0.707i)32-s + (1 + i)37-s − 1.41i·41-s + i·49-s + (−1.00 − 1.00i)52-s + (−1.00 + 1.00i)58-s + 1.00i·64-s + (−1 + i)73-s − 1.41·74-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)8-s + (1 − i)13-s − 1.00·16-s + 1.41i·26-s + 1.41·29-s + (0.707 − 0.707i)32-s + (1 + i)37-s − 1.41i·41-s + i·49-s + (−1.00 − 1.00i)52-s + (−1.00 + 1.00i)58-s + 1.00i·64-s + (−1 + i)73-s − 1.41·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7380269837\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7380269837\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31306200753245864371643572220, −9.438723652618452412335122686870, −8.503013309407695348192527299584, −8.023245722412576788004270925851, −7.00046957759112566052959720995, −6.14777995842846822443576016168, −5.40395388392271782895369443928, −4.27499228808693724421674533876, −2.81387087182950764640514526611, −1.17460419426996029119861987527,
1.35560445489355166254832841367, 2.62922627588755500792718818633, 3.78105983815928603619611147719, 4.64550398783395833253484122584, 6.15759558850442512729912174432, 6.96567193406411933816533276834, 8.008155191505087720301018702208, 8.703023568523237304613196399376, 9.445698443152276969134315994917, 10.24303806571410968256964277428