L(s) = 1 | + (−1.20 + 0.158i)3-s + (0.465 − 0.124i)9-s + (1.17 + 1.53i)11-s + (−1.57 − 0.534i)17-s + (−0.382 + 0.0761i)19-s + (−0.130 + 0.991i)25-s + (0.582 − 0.241i)27-s + (−1.66 − 1.66i)33-s + (1.95 + 0.128i)41-s + (−1.91 − 0.513i)43-s + (−0.793 + 0.608i)49-s + (1.98 + 0.394i)51-s + (0.449 − 0.152i)57-s + (−0.996 − 0.491i)59-s + (0.389 + 1.95i)67-s + ⋯ |
L(s) = 1 | + (−1.20 + 0.158i)3-s + (0.465 − 0.124i)9-s + (1.17 + 1.53i)11-s + (−1.57 − 0.534i)17-s + (−0.382 + 0.0761i)19-s + (−0.130 + 0.991i)25-s + (0.582 − 0.241i)27-s + (−1.66 − 1.66i)33-s + (1.95 + 0.128i)41-s + (−1.91 − 0.513i)43-s + (−0.793 + 0.608i)49-s + (1.98 + 0.394i)51-s + (0.449 − 0.152i)57-s + (−0.996 − 0.491i)59-s + (0.389 + 1.95i)67-s + ⋯ |
Λ(s)=(=(3104s/2ΓC(s)L(s)(−0.523−0.851i)Λ(1−s)
Λ(s)=(=(3104s/2ΓC(s)L(s)(−0.523−0.851i)Λ(1−s)
Degree: |
2 |
Conductor: |
3104
= 25⋅97
|
Sign: |
−0.523−0.851i
|
Analytic conductor: |
1.54909 |
Root analytic conductor: |
1.24462 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3104(1423,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3104, ( :0), −0.523−0.851i)
|
Particular Values
L(21) |
≈ |
0.5200357266 |
L(21) |
≈ |
0.5200357266 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 97 | 1+(0.991−0.130i)T |
good | 3 | 1+(1.20−0.158i)T+(0.965−0.258i)T2 |
| 5 | 1+(0.130−0.991i)T2 |
| 7 | 1+(0.793−0.608i)T2 |
| 11 | 1+(−1.17−1.53i)T+(−0.258+0.965i)T2 |
| 13 | 1+(−0.130+0.991i)T2 |
| 17 | 1+(1.57+0.534i)T+(0.793+0.608i)T2 |
| 19 | 1+(0.382−0.0761i)T+(0.923−0.382i)T2 |
| 23 | 1+(−0.608+0.793i)T2 |
| 29 | 1+(0.991+0.130i)T2 |
| 31 | 1+(0.965−0.258i)T2 |
| 37 | 1+(0.608+0.793i)T2 |
| 41 | 1+(−1.95−0.128i)T+(0.991+0.130i)T2 |
| 43 | 1+(1.91+0.513i)T+(0.866+0.5i)T2 |
| 47 | 1+iT2 |
| 53 | 1+(0.258+0.965i)T2 |
| 59 | 1+(0.996+0.491i)T+(0.608+0.793i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.389−1.95i)T+(−0.923+0.382i)T2 |
| 71 | 1+(−0.991+0.130i)T2 |
| 73 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 79 | 1+(−0.707−0.707i)T2 |
| 83 | 1+(0.284−0.837i)T+(−0.793−0.608i)T2 |
| 89 | 1+(0.0999−0.241i)T+(−0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.307464555120229540639932222822, −8.488671042010364369580826397183, −7.31217236455379207208531378313, −6.77705909990225858950282082965, −6.21618131754265106212567244006, −5.23439682333590426331139296009, −4.56539998902024891229202916127, −3.97742856967178051401590773994, −2.49571177421627777904925971508, −1.42022198341106382219542678069,
0.38693582084575045672180767396, 1.67775310415337207426577502824, 3.03722089307497564143859685834, 4.08076183343830602073085637365, 4.78519407278151713021963601608, 5.83631533123921610778230811832, 6.40462594845237490423644904559, 6.62637121368448101958307015006, 7.943402427858433962542001439686, 8.701805397837258835727263812305