L(s) = 1 | + (−1.20 + 0.158i)3-s + (0.465 − 0.124i)9-s + (1.17 + 1.53i)11-s + (−1.57 − 0.534i)17-s + (−0.382 + 0.0761i)19-s + (−0.130 + 0.991i)25-s + (0.582 − 0.241i)27-s + (−1.66 − 1.66i)33-s + (1.95 + 0.128i)41-s + (−1.91 − 0.513i)43-s + (−0.793 + 0.608i)49-s + (1.98 + 0.394i)51-s + (0.449 − 0.152i)57-s + (−0.996 − 0.491i)59-s + (0.389 + 1.95i)67-s + ⋯ |
L(s) = 1 | + (−1.20 + 0.158i)3-s + (0.465 − 0.124i)9-s + (1.17 + 1.53i)11-s + (−1.57 − 0.534i)17-s + (−0.382 + 0.0761i)19-s + (−0.130 + 0.991i)25-s + (0.582 − 0.241i)27-s + (−1.66 − 1.66i)33-s + (1.95 + 0.128i)41-s + (−1.91 − 0.513i)43-s + (−0.793 + 0.608i)49-s + (1.98 + 0.394i)51-s + (0.449 − 0.152i)57-s + (−0.996 − 0.491i)59-s + (0.389 + 1.95i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5200357266\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5200357266\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 97 | \( 1 + (0.991 - 0.130i)T \) |
good | 3 | \( 1 + (1.20 - 0.158i)T + (0.965 - 0.258i)T^{2} \) |
| 5 | \( 1 + (0.130 - 0.991i)T^{2} \) |
| 7 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 11 | \( 1 + (-1.17 - 1.53i)T + (-0.258 + 0.965i)T^{2} \) |
| 13 | \( 1 + (-0.130 + 0.991i)T^{2} \) |
| 17 | \( 1 + (1.57 + 0.534i)T + (0.793 + 0.608i)T^{2} \) |
| 19 | \( 1 + (0.382 - 0.0761i)T + (0.923 - 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.608 + 0.793i)T^{2} \) |
| 29 | \( 1 + (0.991 + 0.130i)T^{2} \) |
| 31 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 37 | \( 1 + (0.608 + 0.793i)T^{2} \) |
| 41 | \( 1 + (-1.95 - 0.128i)T + (0.991 + 0.130i)T^{2} \) |
| 43 | \( 1 + (1.91 + 0.513i)T + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 59 | \( 1 + (0.996 + 0.491i)T + (0.608 + 0.793i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.389 - 1.95i)T + (-0.923 + 0.382i)T^{2} \) |
| 71 | \( 1 + (-0.991 + 0.130i)T^{2} \) |
| 73 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (0.284 - 0.837i)T + (-0.793 - 0.608i)T^{2} \) |
| 89 | \( 1 + (0.0999 - 0.241i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.307464555120229540639932222822, −8.488671042010364369580826397183, −7.31217236455379207208531378313, −6.77705909990225858950282082965, −6.21618131754265106212567244006, −5.23439682333590426331139296009, −4.56539998902024891229202916127, −3.97742856967178051401590773994, −2.49571177421627777904925971508, −1.42022198341106382219542678069,
0.38693582084575045672180767396, 1.67775310415337207426577502824, 3.03722089307497564143859685834, 4.08076183343830602073085637365, 4.78519407278151713021963601608, 5.83631533123921610778230811832, 6.40462594845237490423644904559, 6.62637121368448101958307015006, 7.943402427858433962542001439686, 8.701805397837258835727263812305