L(s) = 1 | + (0.5 + 1.86i)3-s + (−2.36 + 1.36i)9-s + (1.67 + 0.448i)11-s + (0.0999 + 0.758i)17-s + (1.70 + 0.707i)19-s + (0.258 − 0.965i)25-s + (−2.36 − 2.36i)27-s + 3.34i·33-s + (−1.12 − 1.46i)41-s + (−0.448 − 0.258i)43-s + (−0.965 − 0.258i)49-s + (−1.36 + 0.565i)51-s + (−0.465 + 3.53i)57-s + (−0.758 − 0.0999i)59-s + (−1.12 − 0.465i)67-s + ⋯ |
L(s) = 1 | + (0.5 + 1.86i)3-s + (−2.36 + 1.36i)9-s + (1.67 + 0.448i)11-s + (0.0999 + 0.758i)17-s + (1.70 + 0.707i)19-s + (0.258 − 0.965i)25-s + (−2.36 − 2.36i)27-s + 3.34i·33-s + (−1.12 − 1.46i)41-s + (−0.448 − 0.258i)43-s + (−0.965 − 0.258i)49-s + (−1.36 + 0.565i)51-s + (−0.465 + 3.53i)57-s + (−0.758 − 0.0999i)59-s + (−1.12 − 0.465i)67-s + ⋯ |
Λ(s)=(=(3104s/2ΓC(s)L(s)(−0.634−0.773i)Λ(1−s)
Λ(s)=(=(3104s/2ΓC(s)L(s)(−0.634−0.773i)Λ(1−s)
Degree: |
2 |
Conductor: |
3104
= 25⋅97
|
Sign: |
−0.634−0.773i
|
Analytic conductor: |
1.54909 |
Root analytic conductor: |
1.24462 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3104(2255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3104, ( :0), −0.634−0.773i)
|
Particular Values
L(21) |
≈ |
1.570348225 |
L(21) |
≈ |
1.570348225 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 97 | 1+(0.258+0.965i)T |
good | 3 | 1+(−0.5−1.86i)T+(−0.866+0.5i)T2 |
| 5 | 1+(−0.258+0.965i)T2 |
| 7 | 1+(0.965+0.258i)T2 |
| 11 | 1+(−1.67−0.448i)T+(0.866+0.5i)T2 |
| 13 | 1+(−0.258+0.965i)T2 |
| 17 | 1+(−0.0999−0.758i)T+(−0.965+0.258i)T2 |
| 19 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 23 | 1+(−0.965+0.258i)T2 |
| 29 | 1+(0.258−0.965i)T2 |
| 31 | 1+(0.866−0.5i)T2 |
| 37 | 1+(−0.965−0.258i)T2 |
| 41 | 1+(1.12+1.46i)T+(−0.258+0.965i)T2 |
| 43 | 1+(0.448+0.258i)T+(0.5+0.866i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.866+0.5i)T2 |
| 59 | 1+(0.758+0.0999i)T+(0.965+0.258i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1.12+0.465i)T+(0.707+0.707i)T2 |
| 71 | 1+(0.258+0.965i)T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+iT2 |
| 83 | 1+(−0.258−1.96i)T+(−0.965+0.258i)T2 |
| 89 | 1+(0.366−0.366i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.296470997866164217582457396041, −8.615142044406262418226876743951, −7.969559635710770951515828098882, −6.85361436836872637708646030192, −5.89379660048272708510217606567, −5.14608106372624727472601955117, −4.31359786265935274662880606055, −3.71975299170670309814332859730, −3.10560984405979842812377444113, −1.74121614566766929558505231872,
1.02722502964051098795050805574, 1.62508712363600844694026457862, 3.00520405473588119922837482821, 3.35457065475229030563580767500, 4.88601603173039486235155587288, 5.89768748844911794249348819119, 6.55615746911265343052906834472, 7.15485321638792286962436810345, 7.67168897092172108011427864040, 8.554885493028798666649742014165