Properties

Label 2-3104-776.387-c0-0-7
Degree 22
Conductor 31043104
Sign 11
Analytic cond. 1.549091.54909
Root an. cond. 1.244621.24462
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·3-s − 1.17·5-s + 1.90·7-s + 1.61·9-s + 0.618·11-s − 1.90·15-s + 3.07·21-s − 1.17·23-s + 0.381·25-s + 27-s − 1.90·29-s + 1.00·33-s − 2.23·35-s + 1.90·37-s − 1.61·43-s − 1.90·45-s + 2.61·49-s − 0.726·55-s + 3.07·63-s − 1.90·69-s − 1.61·73-s + 0.618·75-s + 1.17·77-s − 3.07·87-s + 0.618·89-s − 97-s + 1.00·99-s + ⋯
L(s)  = 1  + 1.61·3-s − 1.17·5-s + 1.90·7-s + 1.61·9-s + 0.618·11-s − 1.90·15-s + 3.07·21-s − 1.17·23-s + 0.381·25-s + 27-s − 1.90·29-s + 1.00·33-s − 2.23·35-s + 1.90·37-s − 1.61·43-s − 1.90·45-s + 2.61·49-s − 0.726·55-s + 3.07·63-s − 1.90·69-s − 1.61·73-s + 0.618·75-s + 1.17·77-s − 3.07·87-s + 0.618·89-s − 97-s + 1.00·99-s + ⋯

Functional equation

Λ(s)=(3104s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(3104s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 31043104    =    25972^{5} \cdot 97
Sign: 11
Analytic conductor: 1.549091.54909
Root analytic conductor: 1.244621.24462
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3104(1551,)\chi_{3104} (1551, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 3104, ( :0), 1)(2,\ 3104,\ (\ :0),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.2078065492.207806549
L(12)L(\frac12) \approx 2.2078065492.207806549
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
97 1+T 1 + T
good3 11.61T+T2 1 - 1.61T + T^{2}
5 1+1.17T+T2 1 + 1.17T + T^{2}
7 11.90T+T2 1 - 1.90T + T^{2}
11 10.618T+T2 1 - 0.618T + T^{2}
13 1+T2 1 + T^{2}
17 1T2 1 - T^{2}
19 1T2 1 - T^{2}
23 1+1.17T+T2 1 + 1.17T + T^{2}
29 1+1.90T+T2 1 + 1.90T + T^{2}
31 1T2 1 - T^{2}
37 11.90T+T2 1 - 1.90T + T^{2}
41 1T2 1 - T^{2}
43 1+1.61T+T2 1 + 1.61T + T^{2}
47 1T2 1 - T^{2}
53 1T2 1 - T^{2}
59 1T2 1 - T^{2}
61 1T2 1 - T^{2}
67 1T2 1 - T^{2}
71 1+T2 1 + T^{2}
73 1+1.61T+T2 1 + 1.61T + T^{2}
79 1T2 1 - T^{2}
83 1T2 1 - T^{2}
89 10.618T+T2 1 - 0.618T + T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.638730004384222042260604560119, −8.036756275247097456620194786021, −7.76363768769541073236035885158, −7.13273792258905385610917589810, −5.76796274790677487224462920899, −4.58450125576986025423162466947, −4.10805507489027854891849994526, −3.44413790429507204961278484167, −2.23470792740488525045108630381, −1.51325256976533327581302914130, 1.51325256976533327581302914130, 2.23470792740488525045108630381, 3.44413790429507204961278484167, 4.10805507489027854891849994526, 4.58450125576986025423162466947, 5.76796274790677487224462920899, 7.13273792258905385610917589810, 7.76363768769541073236035885158, 8.036756275247097456620194786021, 8.638730004384222042260604560119

Graph of the ZZ-function along the critical line