Properties

Label 2-3104-776.387-c0-0-7
Degree $2$
Conductor $3104$
Sign $1$
Analytic cond. $1.54909$
Root an. cond. $1.24462$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·3-s − 1.17·5-s + 1.90·7-s + 1.61·9-s + 0.618·11-s − 1.90·15-s + 3.07·21-s − 1.17·23-s + 0.381·25-s + 27-s − 1.90·29-s + 1.00·33-s − 2.23·35-s + 1.90·37-s − 1.61·43-s − 1.90·45-s + 2.61·49-s − 0.726·55-s + 3.07·63-s − 1.90·69-s − 1.61·73-s + 0.618·75-s + 1.17·77-s − 3.07·87-s + 0.618·89-s − 97-s + 1.00·99-s + ⋯
L(s)  = 1  + 1.61·3-s − 1.17·5-s + 1.90·7-s + 1.61·9-s + 0.618·11-s − 1.90·15-s + 3.07·21-s − 1.17·23-s + 0.381·25-s + 27-s − 1.90·29-s + 1.00·33-s − 2.23·35-s + 1.90·37-s − 1.61·43-s − 1.90·45-s + 2.61·49-s − 0.726·55-s + 3.07·63-s − 1.90·69-s − 1.61·73-s + 0.618·75-s + 1.17·77-s − 3.07·87-s + 0.618·89-s − 97-s + 1.00·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3104\)    =    \(2^{5} \cdot 97\)
Sign: $1$
Analytic conductor: \(1.54909\)
Root analytic conductor: \(1.24462\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3104} (1551, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3104,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.207806549\)
\(L(\frac12)\) \(\approx\) \(2.207806549\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
97 \( 1 + T \)
good3 \( 1 - 1.61T + T^{2} \)
5 \( 1 + 1.17T + T^{2} \)
7 \( 1 - 1.90T + T^{2} \)
11 \( 1 - 0.618T + T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + 1.17T + T^{2} \)
29 \( 1 + 1.90T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - 1.90T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 1.61T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + 1.61T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 0.618T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.638730004384222042260604560119, −8.036756275247097456620194786021, −7.76363768769541073236035885158, −7.13273792258905385610917589810, −5.76796274790677487224462920899, −4.58450125576986025423162466947, −4.10805507489027854891849994526, −3.44413790429507204961278484167, −2.23470792740488525045108630381, −1.51325256976533327581302914130, 1.51325256976533327581302914130, 2.23470792740488525045108630381, 3.44413790429507204961278484167, 4.10805507489027854891849994526, 4.58450125576986025423162466947, 5.76796274790677487224462920899, 7.13273792258905385610917589810, 7.76363768769541073236035885158, 8.036756275247097456620194786021, 8.638730004384222042260604560119

Graph of the $Z$-function along the critical line