L(s) = 1 | + (0.207 − 1.57i)3-s + (−1.46 − 0.392i)9-s + (−1.53 − 1.17i)11-s + (0.172 − 0.349i)17-s + (0.923 − 0.617i)19-s + (−0.991 + 0.130i)25-s + (−0.314 + 0.758i)27-s + (−2.16 + 2.16i)33-s + (−1.09 + 1.25i)41-s + (−0.252 + 0.0675i)43-s + (0.608 − 0.793i)49-s + (−0.514 − 0.343i)51-s + (−0.779 − 1.58i)57-s + (−1.85 − 0.630i)59-s + (0.732 + 1.09i)67-s + ⋯ |
L(s) = 1 | + (0.207 − 1.57i)3-s + (−1.46 − 0.392i)9-s + (−1.53 − 1.17i)11-s + (0.172 − 0.349i)17-s + (0.923 − 0.617i)19-s + (−0.991 + 0.130i)25-s + (−0.314 + 0.758i)27-s + (−2.16 + 2.16i)33-s + (−1.09 + 1.25i)41-s + (−0.252 + 0.0675i)43-s + (0.608 − 0.793i)49-s + (−0.514 − 0.343i)51-s + (−0.779 − 1.58i)57-s + (−1.85 − 0.630i)59-s + (0.732 + 1.09i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9169285513\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9169285513\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 97 | \( 1 + (-0.130 + 0.991i)T \) |
good | 3 | \( 1 + (-0.207 + 1.57i)T + (-0.965 - 0.258i)T^{2} \) |
| 5 | \( 1 + (0.991 - 0.130i)T^{2} \) |
| 7 | \( 1 + (-0.608 + 0.793i)T^{2} \) |
| 11 | \( 1 + (1.53 + 1.17i)T + (0.258 + 0.965i)T^{2} \) |
| 13 | \( 1 + (-0.991 + 0.130i)T^{2} \) |
| 17 | \( 1 + (-0.172 + 0.349i)T + (-0.608 - 0.793i)T^{2} \) |
| 19 | \( 1 + (-0.923 + 0.617i)T + (0.382 - 0.923i)T^{2} \) |
| 23 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 29 | \( 1 + (-0.130 - 0.991i)T^{2} \) |
| 31 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 37 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 41 | \( 1 + (1.09 - 1.25i)T + (-0.130 - 0.991i)T^{2} \) |
| 43 | \( 1 + (0.252 - 0.0675i)T + (0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 59 | \( 1 + (1.85 + 0.630i)T + (0.793 + 0.608i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.732 - 1.09i)T + (-0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (0.130 - 0.991i)T^{2} \) |
| 73 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (0.576 + 0.284i)T + (0.608 + 0.793i)T^{2} \) |
| 89 | \( 1 + (-1.83 + 0.758i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.201171545081573705160975744551, −7.79200902214044221039846445292, −7.17925187341987224003327308683, −6.30669265852939503182811817787, −5.63981515693896875643533856751, −4.89460561593206780591663291239, −3.31079939952567523199389457949, −2.77031535478850142283710161826, −1.74475606756843662744994391208, −0.51618542830514667659849222074,
1.99713116621883188264679205476, 3.01788319148012743773732324003, 3.81395619616716789500916914965, 4.62198138137240264340113371652, 5.25140682587782597646847139384, 5.87060502183431735992020200982, 7.21213442690608933470124567239, 7.84811585891493344156259040458, 8.574053671124547759848465132032, 9.552830848650944757394277582095