L(s) = 1 | + (−1.20 − 0.158i)3-s + (0.465 + 0.124i)9-s + (−1.17 + 1.53i)11-s + (−0.357 − 1.05i)17-s + (0.382 − 1.92i)19-s + (0.130 + 0.991i)25-s + (0.582 + 0.241i)27-s + (1.66 − 1.66i)33-s + (−0.0255 − 0.389i)41-s + (1.91 − 0.513i)43-s + (0.793 + 0.608i)49-s + (0.263 + 1.32i)51-s + (−0.767 + 2.26i)57-s + (−0.735 − 1.49i)59-s + (0.128 + 0.0255i)67-s + ⋯ |
L(s) = 1 | + (−1.20 − 0.158i)3-s + (0.465 + 0.124i)9-s + (−1.17 + 1.53i)11-s + (−0.357 − 1.05i)17-s + (0.382 − 1.92i)19-s + (0.130 + 0.991i)25-s + (0.582 + 0.241i)27-s + (1.66 − 1.66i)33-s + (−0.0255 − 0.389i)41-s + (1.91 − 0.513i)43-s + (0.793 + 0.608i)49-s + (0.263 + 1.32i)51-s + (−0.767 + 2.26i)57-s + (−0.735 − 1.49i)59-s + (0.128 + 0.0255i)67-s + ⋯ |
Λ(s)=(=(3104s/2ΓC(s)L(s)(0.645+0.763i)Λ(1−s)
Λ(s)=(=(3104s/2ΓC(s)L(s)(0.645+0.763i)Λ(1−s)
Degree: |
2 |
Conductor: |
3104
= 25⋅97
|
Sign: |
0.645+0.763i
|
Analytic conductor: |
1.54909 |
Root analytic conductor: |
1.24462 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3104(1743,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3104, ( :0), 0.645+0.763i)
|
Particular Values
L(21) |
≈ |
0.6127446374 |
L(21) |
≈ |
0.6127446374 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 97 | 1+(−0.991−0.130i)T |
good | 3 | 1+(1.20+0.158i)T+(0.965+0.258i)T2 |
| 5 | 1+(−0.130−0.991i)T2 |
| 7 | 1+(−0.793−0.608i)T2 |
| 11 | 1+(1.17−1.53i)T+(−0.258−0.965i)T2 |
| 13 | 1+(0.130+0.991i)T2 |
| 17 | 1+(0.357+1.05i)T+(−0.793+0.608i)T2 |
| 19 | 1+(−0.382+1.92i)T+(−0.923−0.382i)T2 |
| 23 | 1+(0.608+0.793i)T2 |
| 29 | 1+(−0.991+0.130i)T2 |
| 31 | 1+(0.965+0.258i)T2 |
| 37 | 1+(−0.608+0.793i)T2 |
| 41 | 1+(0.0255+0.389i)T+(−0.991+0.130i)T2 |
| 43 | 1+(−1.91+0.513i)T+(0.866−0.5i)T2 |
| 47 | 1−iT2 |
| 53 | 1+(0.258−0.965i)T2 |
| 59 | 1+(0.735+1.49i)T+(−0.608+0.793i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−0.128−0.0255i)T+(0.923+0.382i)T2 |
| 71 | 1+(0.991+0.130i)T2 |
| 73 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 79 | 1+(−0.707+0.707i)T2 |
| 83 | 1+(−1.69+0.576i)T+(0.793−0.608i)T2 |
| 89 | 1+(0.0999+0.241i)T+(−0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.064113439255463073731553361634, −7.62388050746867452009392159815, −7.26407981494712666190940949133, −6.59993443684376841896732080092, −5.57030714628054103495158076847, −4.95672417875904069999531961061, −4.54992673939177369052001983576, −2.99535726560672902421065261412, −2.14729990935756365874884120293, −0.56227069530545432995740059242,
0.953658272059831046423545549700, 2.46169330247526200483843219064, 3.53684198985613688260036575095, 4.41761473844007297160262335679, 5.44838734703180866555951216326, 5.90953583971881628325245974461, 6.30621032830821716465085268737, 7.59266579118080406475494814212, 8.207734370745482847742486541180, 8.820541639529236783360850651085