L(s) = 1 | + (0.207 − 0.158i)3-s + (−0.241 + 0.900i)9-s + (−0.0675 − 0.513i)11-s + (−0.128 + 1.95i)17-s + (−0.923 + 1.38i)19-s + (−0.608 + 0.793i)25-s + (0.192 + 0.465i)27-s + (−0.0955 − 0.0955i)33-s + (1.05 + 0.357i)41-s + (−0.410 − 1.53i)43-s + (0.991 − 0.130i)49-s + (0.284 + 0.425i)51-s + (0.0283 + 0.433i)57-s + (0.257 − 0.293i)59-s + (1.57 + 1.05i)67-s + ⋯ |
L(s) = 1 | + (0.207 − 0.158i)3-s + (−0.241 + 0.900i)9-s + (−0.0675 − 0.513i)11-s + (−0.128 + 1.95i)17-s + (−0.923 + 1.38i)19-s + (−0.608 + 0.793i)25-s + (0.192 + 0.465i)27-s + (−0.0955 − 0.0955i)33-s + (1.05 + 0.357i)41-s + (−0.410 − 1.53i)43-s + (0.991 − 0.130i)49-s + (0.284 + 0.425i)51-s + (0.0283 + 0.433i)57-s + (0.257 − 0.293i)59-s + (1.57 + 1.05i)67-s + ⋯ |
Λ(s)=(=(3104s/2ΓC(s)L(s)(0.308−0.951i)Λ(1−s)
Λ(s)=(=(3104s/2ΓC(s)L(s)(0.308−0.951i)Λ(1−s)
Degree: |
2 |
Conductor: |
3104
= 25⋅97
|
Sign: |
0.308−0.951i
|
Analytic conductor: |
1.54909 |
Root analytic conductor: |
1.24462 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3104(1263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3104, ( :0), 0.308−0.951i)
|
Particular Values
L(21) |
≈ |
1.100595983 |
L(21) |
≈ |
1.100595983 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 97 | 1+(0.793−0.608i)T |
good | 3 | 1+(−0.207+0.158i)T+(0.258−0.965i)T2 |
| 5 | 1+(0.608−0.793i)T2 |
| 7 | 1+(−0.991+0.130i)T2 |
| 11 | 1+(0.0675+0.513i)T+(−0.965+0.258i)T2 |
| 13 | 1+(−0.608+0.793i)T2 |
| 17 | 1+(0.128−1.95i)T+(−0.991−0.130i)T2 |
| 19 | 1+(0.923−1.38i)T+(−0.382−0.923i)T2 |
| 23 | 1+(0.130−0.991i)T2 |
| 29 | 1+(0.793+0.608i)T2 |
| 31 | 1+(0.258−0.965i)T2 |
| 37 | 1+(−0.130−0.991i)T2 |
| 41 | 1+(−1.05−0.357i)T+(0.793+0.608i)T2 |
| 43 | 1+(0.410+1.53i)T+(−0.866+0.5i)T2 |
| 47 | 1+iT2 |
| 53 | 1+(0.965+0.258i)T2 |
| 59 | 1+(−0.257+0.293i)T+(−0.130−0.991i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−1.57−1.05i)T+(0.382+0.923i)T2 |
| 71 | 1+(−0.793+0.608i)T2 |
| 73 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 79 | 1+(0.707+0.707i)T2 |
| 83 | 1+(1.50+0.0983i)T+(0.991+0.130i)T2 |
| 89 | 1+(1.12+0.465i)T+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.736347362350989212313062800588, −8.284818384137713390637196575219, −7.75966656881997772296137487313, −6.76737189081060869401591275106, −5.86974362211968950700419100202, −5.44501787359434701888215029539, −4.14588438121690093189640279078, −3.62754927260318928381352669345, −2.34052816441802697697617696023, −1.59984221475089465836789092206,
0.64576724806231953065861426128, 2.34925109558118133221651070436, 2.94914985468286081625294431608, 4.14369019923536391000171761255, 4.72232347847113313240748201334, 5.67971229344761344918188463177, 6.65715725576688099690521645807, 7.07588681225569484351274685595, 8.051014113988557240143178145862, 8.841132662396466021991819439331