L(s) = 1 | + (−1.39 + 0.236i)2-s + (−0.5 − 0.866i)3-s + (1.88 − 0.659i)4-s + (1.86 − 1.86i)5-s + (0.901 + 1.08i)6-s + (4.71 − 1.26i)7-s + (−2.47 + 1.36i)8-s + (−0.499 + 0.866i)9-s + (−2.16 + 3.04i)10-s + (−1.99 − 0.535i)11-s + (−1.51 − 1.30i)12-s + (−3.15 + 1.75i)13-s + (−6.27 + 2.87i)14-s + (−2.54 − 0.683i)15-s + (3.13 − 2.48i)16-s + (3.84 + 2.22i)17-s + ⋯ |
L(s) = 1 | + (−0.985 + 0.167i)2-s + (−0.288 − 0.499i)3-s + (0.944 − 0.329i)4-s + (0.834 − 0.834i)5-s + (0.368 + 0.444i)6-s + (1.78 − 0.477i)7-s + (−0.875 + 0.482i)8-s + (−0.166 + 0.288i)9-s + (−0.683 + 0.962i)10-s + (−0.602 − 0.161i)11-s + (−0.437 − 0.376i)12-s + (−0.874 + 0.485i)13-s + (−1.67 + 0.768i)14-s + (−0.658 − 0.176i)15-s + (0.782 − 0.622i)16-s + (0.933 + 0.539i)17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.501+0.865i)Λ(2−s)
Λ(s)=(=(312s/2ΓC(s+1/2)L(s)(0.501+0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.501+0.865i
|
Analytic conductor: |
2.49133 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(115,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :1/2), 0.501+0.865i)
|
Particular Values
L(1) |
≈ |
0.873313−0.503040i |
L(21) |
≈ |
0.873313−0.503040i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39−0.236i)T |
| 3 | 1+(0.5+0.866i)T |
| 13 | 1+(3.15−1.75i)T |
good | 5 | 1+(−1.86+1.86i)T−5iT2 |
| 7 | 1+(−4.71+1.26i)T+(6.06−3.5i)T2 |
| 11 | 1+(1.99+0.535i)T+(9.52+5.5i)T2 |
| 17 | 1+(−3.84−2.22i)T+(8.5+14.7i)T2 |
| 19 | 1+(−2.62+0.703i)T+(16.4−9.5i)T2 |
| 23 | 1+(3.41+5.91i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.143−0.0829i)T+(14.5−25.1i)T2 |
| 31 | 1+(−3.77+3.77i)T−31iT2 |
| 37 | 1+(1.19−4.46i)T+(−32.0−18.5i)T2 |
| 41 | 1+(2.06−7.71i)T+(−35.5−20.5i)T2 |
| 43 | 1+(7.03+4.05i)T+(21.5+37.2i)T2 |
| 47 | 1+(1.87+1.87i)T+47iT2 |
| 53 | 1+8.22iT−53T2 |
| 59 | 1+(−0.352−1.31i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−0.601−0.347i)T+(30.5+52.8i)T2 |
| 67 | 1+(−1.26+4.71i)T+(−58.0−33.5i)T2 |
| 71 | 1+(−2.46−9.19i)T+(−61.4+35.5i)T2 |
| 73 | 1+(11.2−11.2i)T−73iT2 |
| 79 | 1−9.91iT−79T2 |
| 83 | 1+(−3.88−3.88i)T+83iT2 |
| 89 | 1+(−13.1−3.52i)T+(77.0+44.5i)T2 |
| 97 | 1+(1.52−0.408i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51807197261609942934935617317, −10.41578858375802369427996569674, −9.734631765959103833956472587952, −8.319055664391217024072695677106, −8.051276313671524721127511649273, −6.87419066079891921933064138317, −5.56282761559221559158403153668, −4.84289030475277231853937895333, −2.17746095141961220483245340732, −1.17649219975015414106203239438,
1.81670692215019467775974361244, 3.00519428276545733137831523625, 5.07311411028045043374379905115, 5.83347494810950093993638082463, 7.37840425944829288059338266574, 7.966575243217084560687004749630, 9.225269165345992233676459435924, 10.14235759507906660518742642693, 10.60526045106149499654835448028, 11.66008086451382607732392078198