L(s) = 1 | + (−2.23 + 1.73i)2-s − 3i·3-s + (1.96 − 7.75i)4-s − 12.2·5-s + (5.21 + 6.69i)6-s − 32.4i·7-s + (9.07 + 20.7i)8-s − 9·9-s + (27.4 − 21.3i)10-s − 68.1·11-s + (−23.2 − 5.89i)12-s + (−8.22 − 46.1i)13-s + (56.2 + 72.3i)14-s + 36.8i·15-s + (−56.2 − 30.4i)16-s + 86.0·17-s + ⋯ |
L(s) = 1 | + (−0.789 + 0.614i)2-s − 0.577i·3-s + (0.245 − 0.969i)4-s − 1.09·5-s + (0.354 + 0.455i)6-s − 1.74i·7-s + (0.401 + 0.915i)8-s − 0.333·9-s + (0.866 − 0.674i)10-s − 1.86·11-s + (−0.559 − 0.141i)12-s + (−0.175 − 0.984i)13-s + (1.07 + 1.38i)14-s + 0.634i·15-s + (−0.879 − 0.476i)16-s + 1.22·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.555−0.831i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.555−0.831i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.555−0.831i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.555−0.831i)
|
Particular Values
L(2) |
≈ |
0.06574321469 |
L(21) |
≈ |
0.06574321469 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.23−1.73i)T |
| 3 | 1+3iT |
| 13 | 1+(8.22+46.1i)T |
good | 5 | 1+12.2T+125T2 |
| 7 | 1+32.4iT−343T2 |
| 11 | 1+68.1T+1.33e3T2 |
| 17 | 1−86.0T+4.91e3T2 |
| 19 | 1−16.5T+6.85e3T2 |
| 23 | 1+41.2T+1.21e4T2 |
| 29 | 1+21.6iT−2.43e4T2 |
| 31 | 1−111.iT−2.97e4T2 |
| 37 | 1−410.T+5.06e4T2 |
| 41 | 1+253.iT−6.89e4T2 |
| 43 | 1−341.iT−7.95e4T2 |
| 47 | 1−360.iT−1.03e5T2 |
| 53 | 1+226.iT−1.48e5T2 |
| 59 | 1+725.T+2.05e5T2 |
| 61 | 1−118.iT−2.26e5T2 |
| 67 | 1+685.T+3.00e5T2 |
| 71 | 1+312.iT−3.57e5T2 |
| 73 | 1−736.iT−3.89e5T2 |
| 79 | 1+354.T+4.93e5T2 |
| 83 | 1−798.T+5.71e5T2 |
| 89 | 1−509.iT−7.04e5T2 |
| 97 | 1+1.79e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54311927386405264345108312834, −9.865953505906182825041657121590, −8.011091639139828668724218196519, −7.81461889917859228706071153137, −7.29775127926620531975387626796, −5.84736473493118618288594655199, −4.64303544426031398575138067658, −3.05913936422437907915696866197, −0.946556906267195167939346255204, −0.03995882831199853769627765786,
2.31755955365996856523048871732, 3.24931916640187728568383820251, 4.64274634581402692862125343988, 5.84871008934797164018010797847, 7.63859502248739759243181344168, 8.138551050358704304036879985217, 9.124398264603493330820534900502, 9.926985021613636225027102808723, 10.95743604216601079222430625217, 11.86528001664524334920214749340