L(s) = 1 | + (−2.23 + 1.73i)2-s − 3i·3-s + (1.96 − 7.75i)4-s − 12.2·5-s + (5.21 + 6.69i)6-s − 32.4i·7-s + (9.07 + 20.7i)8-s − 9·9-s + (27.4 − 21.3i)10-s − 68.1·11-s + (−23.2 − 5.89i)12-s + (−8.22 − 46.1i)13-s + (56.2 + 72.3i)14-s + 36.8i·15-s + (−56.2 − 30.4i)16-s + 86.0·17-s + ⋯ |
L(s) = 1 | + (−0.789 + 0.614i)2-s − 0.577i·3-s + (0.245 − 0.969i)4-s − 1.09·5-s + (0.354 + 0.455i)6-s − 1.74i·7-s + (0.401 + 0.915i)8-s − 0.333·9-s + (0.866 − 0.674i)10-s − 1.86·11-s + (−0.559 − 0.141i)12-s + (−0.175 − 0.984i)13-s + (1.07 + 1.38i)14-s + 0.634i·15-s + (−0.879 − 0.476i)16-s + 1.22·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.555 - 0.831i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.06574321469\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06574321469\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.23 - 1.73i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (8.22 + 46.1i)T \) |
good | 5 | \( 1 + 12.2T + 125T^{2} \) |
| 7 | \( 1 + 32.4iT - 343T^{2} \) |
| 11 | \( 1 + 68.1T + 1.33e3T^{2} \) |
| 17 | \( 1 - 86.0T + 4.91e3T^{2} \) |
| 19 | \( 1 - 16.5T + 6.85e3T^{2} \) |
| 23 | \( 1 + 41.2T + 1.21e4T^{2} \) |
| 29 | \( 1 + 21.6iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 111. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 410.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 253. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 341. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 360. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 226. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 725.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 118. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 685.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 312. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 736. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 354.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 798.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 509. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.79e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54311927386405264345108312834, −9.865953505906182825041657121590, −8.011091639139828668724218196519, −7.81461889917859228706071153137, −7.29775127926620531975387626796, −5.84736473493118618288594655199, −4.64303544426031398575138067658, −3.05913936422437907915696866197, −0.946556906267195167939346255204, −0.03995882831199853769627765786,
2.31755955365996856523048871732, 3.24931916640187728568383820251, 4.64274634581402692862125343988, 5.84871008934797164018010797847, 7.63859502248739759243181344168, 8.138551050358704304036879985217, 9.124398264603493330820534900502, 9.926985021613636225027102808723, 10.95743604216601079222430625217, 11.86528001664524334920214749340