L(s) = 1 | + (−0.707 + 0.707i)2-s + i·3-s − 1.00i·4-s + 1.41i·5-s + (−0.707 − 0.707i)6-s + (0.707 + 0.707i)8-s − 9-s + (−1.00 − 1.00i)10-s − 1.41i·11-s + 1.00·12-s + i·13-s − 1.41·15-s − 1.00·16-s + (0.707 − 0.707i)18-s + 1.41·20-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + i·3-s − 1.00i·4-s + 1.41i·5-s + (−0.707 − 0.707i)6-s + (0.707 + 0.707i)8-s − 9-s + (−1.00 − 1.00i)10-s − 1.41i·11-s + 1.00·12-s + i·13-s − 1.41·15-s − 1.00·16-s + (0.707 − 0.707i)18-s + 1.41·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5398307506\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5398307506\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 - iT \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - 1.41iT - T^{2} \) |
| 61 | \( 1 + 2iT - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64158181560743975123646177508, −10.94423782161547508564549105562, −10.44601444652122138613385426467, −9.379941059344488175348511682378, −8.643214569290606881624117526876, −7.46504611769941035444126038159, −6.38836196830634882603924957532, −5.65890561338144717780429241510, −4.10959190140901163584825917625, −2.73814697579320246920588890563,
1.16159717848763700919032967287, 2.48585802223656674898890403744, 4.28171517576368719110760851354, 5.53767000079290569436689792216, 7.13928923669960564551078389804, 7.889187637506967363427835836916, 8.738181158848267996868063304094, 9.535566602470359230551740934978, 10.62433851693333639773189230935, 11.83184803506176836741157784678