L(s) = 1 | − 0.229·2-s − 7.94·4-s − 5·5-s + 7·7-s + 3.66·8-s + 1.14·10-s + 51.0·11-s + 46.0·13-s − 1.60·14-s + 62.7·16-s − 72.7·17-s − 123.·19-s + 39.7·20-s − 11.7·22-s − 156.·23-s + 25·25-s − 10.5·26-s − 55.6·28-s − 191.·29-s − 116.·31-s − 43.7·32-s + 16.7·34-s − 35·35-s + 83.1·37-s + 28.4·38-s − 18.3·40-s − 466.·41-s + ⋯ |
L(s) = 1 | − 0.0812·2-s − 0.993·4-s − 0.447·5-s + 0.377·7-s + 0.161·8-s + 0.0363·10-s + 1.39·11-s + 0.983·13-s − 0.0307·14-s + 0.980·16-s − 1.03·17-s − 1.49·19-s + 0.444·20-s − 0.113·22-s − 1.41·23-s + 0.200·25-s − 0.0798·26-s − 0.375·28-s − 1.22·29-s − 0.673·31-s − 0.241·32-s + 0.0843·34-s − 0.169·35-s + 0.369·37-s + 0.121·38-s − 0.0724·40-s − 1.77·41-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(315s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 7 | 1−7T |
good | 2 | 1+0.229T+8T2 |
| 11 | 1−51.0T+1.33e3T2 |
| 13 | 1−46.0T+2.19e3T2 |
| 17 | 1+72.7T+4.91e3T2 |
| 19 | 1+123.T+6.85e3T2 |
| 23 | 1+156.T+1.21e4T2 |
| 29 | 1+191.T+2.43e4T2 |
| 31 | 1+116.T+2.97e4T2 |
| 37 | 1−83.1T+5.06e4T2 |
| 41 | 1+466.T+6.89e4T2 |
| 43 | 1−422.T+7.95e4T2 |
| 47 | 1+268.T+1.03e5T2 |
| 53 | 1+310.T+1.48e5T2 |
| 59 | 1−709.T+2.05e5T2 |
| 61 | 1−402.T+2.26e5T2 |
| 67 | 1+114.T+3.00e5T2 |
| 71 | 1+214.T+3.57e5T2 |
| 73 | 1−402.T+3.89e5T2 |
| 79 | 1+1.37e3T+4.93e5T2 |
| 83 | 1+1.15e3T+5.71e5T2 |
| 89 | 1+366.T+7.04e5T2 |
| 97 | 1+1.06e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86346312755941098979034917844, −9.663395962957927789884371756961, −8.724989337689837375123592810194, −8.259430965560902117938637901779, −6.83508950229635540164151879136, −5.77795834298411916829247256156, −4.26248153342305032211607885846, −3.87528630901471435766539165442, −1.66079032692313443558990512394, 0,
1.66079032692313443558990512394, 3.87528630901471435766539165442, 4.26248153342305032211607885846, 5.77795834298411916829247256156, 6.83508950229635540164151879136, 8.259430965560902117938637901779, 8.724989337689837375123592810194, 9.663395962957927789884371756961, 10.86346312755941098979034917844