L(s) = 1 | + 3.37·2-s + 3.42·4-s − 5·5-s + 7·7-s − 15.4·8-s − 16.8·10-s − 45.0·11-s − 35.4·13-s + 23.6·14-s − 79.6·16-s − 29.4·17-s + 3.18·19-s − 17.1·20-s − 152.·22-s + 23.6·23-s + 25·25-s − 119.·26-s + 23.9·28-s − 9.22·29-s − 80.2·31-s − 145.·32-s − 99.5·34-s − 35·35-s − 61.1·37-s + 10.7·38-s + 77.3·40-s − 282.·41-s + ⋯ |
L(s) = 1 | + 1.19·2-s + 0.427·4-s − 0.447·5-s + 0.377·7-s − 0.683·8-s − 0.534·10-s − 1.23·11-s − 0.757·13-s + 0.451·14-s − 1.24·16-s − 0.420·17-s + 0.0384·19-s − 0.191·20-s − 1.47·22-s + 0.214·23-s + 0.200·25-s − 0.904·26-s + 0.161·28-s − 0.0590·29-s − 0.464·31-s − 0.803·32-s − 0.501·34-s − 0.169·35-s − 0.271·37-s + 0.0460·38-s + 0.305·40-s − 1.07·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + 5T \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 - 3.37T + 8T^{2} \) |
| 11 | \( 1 + 45.0T + 1.33e3T^{2} \) |
| 13 | \( 1 + 35.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + 29.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 3.18T + 6.85e3T^{2} \) |
| 23 | \( 1 - 23.6T + 1.21e4T^{2} \) |
| 29 | \( 1 + 9.22T + 2.43e4T^{2} \) |
| 31 | \( 1 + 80.2T + 2.97e4T^{2} \) |
| 37 | \( 1 + 61.1T + 5.06e4T^{2} \) |
| 41 | \( 1 + 282.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 58.8T + 7.95e4T^{2} \) |
| 47 | \( 1 + 371.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 256.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 571.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 835.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 933.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 378.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 494.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.07e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 722.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 89.5T + 7.04e5T^{2} \) |
| 97 | \( 1 + 101.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06806138881812740786814399272, −9.980385867617794772318341819833, −8.753570404130965801157535877409, −7.76003949676780028202461263062, −6.68539676999222449378790441002, −5.33326573362356420630163474537, −4.78819254600315534514037656028, −3.56151943909063911641643970271, −2.39149528941306855104739166130, 0,
2.39149528941306855104739166130, 3.56151943909063911641643970271, 4.78819254600315534514037656028, 5.33326573362356420630163474537, 6.68539676999222449378790441002, 7.76003949676780028202461263062, 8.753570404130965801157535877409, 9.980385867617794772318341819833, 11.06806138881812740786814399272