Properties

Label 2-315-1.1-c3-0-29
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.82·2-s + 6.65·4-s − 5·5-s − 7·7-s − 5.14·8-s − 19.1·10-s − 48.5·11-s − 43.6·13-s − 26.7·14-s − 72.9·16-s + 67.6·17-s − 93.2·19-s − 33.2·20-s − 185.·22-s + 104.·23-s + 25·25-s − 167.·26-s − 46.5·28-s + 58.7·29-s − 9.08·31-s − 238.·32-s + 259.·34-s + 35·35-s − 252.·37-s − 357.·38-s + 25.7·40-s − 276.·41-s + ⋯
L(s)  = 1  + 1.35·2-s + 0.832·4-s − 0.447·5-s − 0.377·7-s − 0.227·8-s − 0.605·10-s − 1.33·11-s − 0.931·13-s − 0.511·14-s − 1.13·16-s + 0.965·17-s − 1.12·19-s − 0.372·20-s − 1.80·22-s + 0.944·23-s + 0.200·25-s − 1.26·26-s − 0.314·28-s + 0.376·29-s − 0.0526·31-s − 1.31·32-s + 1.30·34-s + 0.169·35-s − 1.12·37-s − 1.52·38-s + 0.101·40-s − 1.05·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 + 7T \)
good2 \( 1 - 3.82T + 8T^{2} \)
11 \( 1 + 48.5T + 1.33e3T^{2} \)
13 \( 1 + 43.6T + 2.19e3T^{2} \)
17 \( 1 - 67.6T + 4.91e3T^{2} \)
19 \( 1 + 93.2T + 6.85e3T^{2} \)
23 \( 1 - 104.T + 1.21e4T^{2} \)
29 \( 1 - 58.7T + 2.43e4T^{2} \)
31 \( 1 + 9.08T + 2.97e4T^{2} \)
37 \( 1 + 252.T + 5.06e4T^{2} \)
41 \( 1 + 276.T + 6.89e4T^{2} \)
43 \( 1 + 92.6T + 7.95e4T^{2} \)
47 \( 1 - 582.T + 1.03e5T^{2} \)
53 \( 1 + 623.T + 1.48e5T^{2} \)
59 \( 1 - 524.T + 2.05e5T^{2} \)
61 \( 1 + 352.T + 2.26e5T^{2} \)
67 \( 1 + 736.T + 3.00e5T^{2} \)
71 \( 1 - 492.T + 3.57e5T^{2} \)
73 \( 1 - 1.16e3T + 3.89e5T^{2} \)
79 \( 1 + 872.T + 4.93e5T^{2} \)
83 \( 1 - 529.T + 5.71e5T^{2} \)
89 \( 1 - 385.T + 7.04e5T^{2} \)
97 \( 1 + 463.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94134673100186775562682202165, −10.07405441550256819965094553309, −8.793958841921703801403813658371, −7.64082229078550582013608267198, −6.64470175715975278717112869722, −5.42455824634066542670465415236, −4.74262187066406129836835954238, −3.48151172056530155917647529141, −2.53407874209039872863235914006, 0, 2.53407874209039872863235914006, 3.48151172056530155917647529141, 4.74262187066406129836835954238, 5.42455824634066542670465415236, 6.64470175715975278717112869722, 7.64082229078550582013608267198, 8.793958841921703801403813658371, 10.07405441550256819965094553309, 10.94134673100186775562682202165

Graph of the $Z$-function along the critical line