L(s) = 1 | + 2.33·2-s + 3.44·4-s + (1.33 − 1.79i)5-s + (−2.53 − 0.741i)7-s + 3.38·8-s + (3.11 − 4.19i)10-s + 1.41i·11-s + 1.14·13-s + (−5.92 − 1.73i)14-s + 1.00·16-s + 5.20i·17-s + 4.61i·19-s + (4.59 − 6.19i)20-s + 3.30i·22-s − 3.61·23-s + ⋯ |
L(s) = 1 | + 1.65·2-s + 1.72·4-s + (0.595 − 0.803i)5-s + (−0.959 − 0.280i)7-s + 1.19·8-s + (0.983 − 1.32i)10-s + 0.426i·11-s + 0.316·13-s + (−1.58 − 0.462i)14-s + 0.250·16-s + 1.26i·17-s + 1.05i·19-s + (1.02 − 1.38i)20-s + 0.703i·22-s − 0.754·23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.953+0.302i)Λ(2−s)
Λ(s)=(=(315s/2ΓC(s+1/2)L(s)(0.953+0.302i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.953+0.302i
|
Analytic conductor: |
2.51528 |
Root analytic conductor: |
1.58596 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(314,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :1/2), 0.953+0.302i)
|
Particular Values
L(1) |
≈ |
3.01881−0.467227i |
L(21) |
≈ |
3.01881−0.467227i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−1.33+1.79i)T |
| 7 | 1+(2.53+0.741i)T |
good | 2 | 1−2.33T+2T2 |
| 11 | 1−1.41iT−11T2 |
| 13 | 1−1.14T+13T2 |
| 17 | 1−5.20iT−17T2 |
| 19 | 1−4.61iT−19T2 |
| 23 | 1+3.61T+23T2 |
| 29 | 1−8.34iT−29T2 |
| 31 | 1+8.38iT−31T2 |
| 37 | 1+8.08iT−37T2 |
| 41 | 1−9.19T+41T2 |
| 43 | 1+5.11iT−43T2 |
| 47 | 1+1.61iT−47T2 |
| 53 | 1−3.14T+53T2 |
| 59 | 1+11.8T+59T2 |
| 61 | 1+7.53iT−61T2 |
| 67 | 1−9.57iT−67T2 |
| 71 | 1+5.51iT−71T2 |
| 73 | 1+11.2T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+1.61iT−83T2 |
| 89 | 1−7.99T+89T2 |
| 97 | 1−1.14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25455869884669842696892408423, −10.85148420112679641784354860048, −9.931811869397251843665305402515, −8.855436667818132341090667412400, −7.43757975257372093541728754913, −6.09783340130460544140036838200, −5.78580806867255059657220861826, −4.37340643847382941214416481915, −3.60647155159479287694005455393, −2.00516954240082135049054479169,
2.59944912669301067306853146054, 3.22832075588624545185506941837, 4.62313823098042159068628163505, 5.85056982641495549265078337060, 6.40039106075702942023232640397, 7.31425679029831873380957148095, 9.072045282538142537233653091890, 10.03562061893904554747608176446, 11.15209335908486735188758483641, 11.83890111523401733795511419794