L(s) = 1 | + (−0.543 − 2.02i)2-s + (−2.08 + 1.20i)4-s + (−1.61 + 1.54i)5-s + (1.07 + 2.41i)7-s + (0.609 + 0.609i)8-s + (4.01 + 2.43i)10-s + (−4.56 + 2.63i)11-s + (−3.08 + 3.08i)13-s + (4.31 − 3.50i)14-s + (−1.50 + 2.60i)16-s + (5.92 + 1.58i)17-s + (0.715 + 0.413i)19-s + (1.51 − 5.17i)20-s + (7.82 + 7.82i)22-s + (1.33 − 0.359i)23-s + ⋯ |
L(s) = 1 | + (−0.384 − 1.43i)2-s + (−1.04 + 0.602i)4-s + (−0.722 + 0.691i)5-s + (0.407 + 0.913i)7-s + (0.215 + 0.215i)8-s + (1.26 + 0.771i)10-s + (−1.37 + 0.794i)11-s + (−0.855 + 0.855i)13-s + (1.15 − 0.936i)14-s + (−0.376 + 0.651i)16-s + (1.43 + 0.385i)17-s + (0.164 + 0.0948i)19-s + (0.337 − 1.15i)20-s + (1.66 + 1.66i)22-s + (0.279 − 0.0748i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.789 - 0.613i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.789 - 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.528315 + 0.181275i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.528315 + 0.181275i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.61 - 1.54i)T \) |
| 7 | \( 1 + (-1.07 - 2.41i)T \) |
good | 2 | \( 1 + (0.543 + 2.02i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (4.56 - 2.63i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.08 - 3.08i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5.92 - 1.58i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.715 - 0.413i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.33 + 0.359i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 7.45T + 29T^{2} \) |
| 31 | \( 1 + (2.97 + 5.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.12 + 0.568i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 2.00iT - 41T^{2} \) |
| 43 | \( 1 + (1.73 - 1.73i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.11 - 4.17i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (1.78 - 6.65i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-4.07 - 7.06i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.12 + 1.94i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.25 - 4.67i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 9.40iT - 71T^{2} \) |
| 73 | \( 1 + (-10.4 - 2.80i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (7.72 + 4.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.36 + 2.36i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.69 + 8.13i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.63 - 5.63i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69008686304129940659150667987, −10.92912861893460060651355737737, −10.05108000626380391209442952853, −9.333553990578088463853026629865, −8.056322865336538469323845008582, −7.29608817055208952834753965238, −5.60911884778910876767163940662, −4.27093501290204521599878394672, −2.94804249808838000438936688527, −2.06203022159057065991045146852,
0.44334264377295833310907462448, 3.34769780875126347097863252459, 5.10309085277425152679668956550, 5.39349297853356615406132608961, 7.11460602741501979270377590427, 7.84708361764197707874015632326, 8.131232026403959303081481482155, 9.420363236211734240279961518092, 10.47246328247614792028918407329, 11.50603368754165879704479398349