L(s) = 1 | + (−0.543 − 2.02i)2-s + (−2.08 + 1.20i)4-s + (−1.61 + 1.54i)5-s + (1.07 + 2.41i)7-s + (0.609 + 0.609i)8-s + (4.01 + 2.43i)10-s + (−4.56 + 2.63i)11-s + (−3.08 + 3.08i)13-s + (4.31 − 3.50i)14-s + (−1.50 + 2.60i)16-s + (5.92 + 1.58i)17-s + (0.715 + 0.413i)19-s + (1.51 − 5.17i)20-s + (7.82 + 7.82i)22-s + (1.33 − 0.359i)23-s + ⋯ |
L(s) = 1 | + (−0.384 − 1.43i)2-s + (−1.04 + 0.602i)4-s + (−0.722 + 0.691i)5-s + (0.407 + 0.913i)7-s + (0.215 + 0.215i)8-s + (1.26 + 0.771i)10-s + (−1.37 + 0.794i)11-s + (−0.855 + 0.855i)13-s + (1.15 − 0.936i)14-s + (−0.376 + 0.651i)16-s + (1.43 + 0.385i)17-s + (0.164 + 0.0948i)19-s + (0.337 − 1.15i)20-s + (1.66 + 1.66i)22-s + (0.279 − 0.0748i)23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.789−0.613i)Λ(2−s)
Λ(s)=(=(315s/2ΓC(s+1/2)L(s)(0.789−0.613i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.789−0.613i
|
Analytic conductor: |
2.51528 |
Root analytic conductor: |
1.58596 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :1/2), 0.789−0.613i)
|
Particular Values
L(1) |
≈ |
0.528315+0.181275i |
L(21) |
≈ |
0.528315+0.181275i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(1.61−1.54i)T |
| 7 | 1+(−1.07−2.41i)T |
good | 2 | 1+(0.543+2.02i)T+(−1.73+i)T2 |
| 11 | 1+(4.56−2.63i)T+(5.5−9.52i)T2 |
| 13 | 1+(3.08−3.08i)T−13iT2 |
| 17 | 1+(−5.92−1.58i)T+(14.7+8.5i)T2 |
| 19 | 1+(−0.715−0.413i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.33+0.359i)T+(19.9−11.5i)T2 |
| 29 | 1+7.45T+29T2 |
| 31 | 1+(2.97+5.15i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.12+0.568i)T+(32.0−18.5i)T2 |
| 41 | 1+2.00iT−41T2 |
| 43 | 1+(1.73−1.73i)T−43iT2 |
| 47 | 1+(−1.11−4.17i)T+(−40.7+23.5i)T2 |
| 53 | 1+(1.78−6.65i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−4.07−7.06i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.12+1.94i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.25−4.67i)T+(−58.0−33.5i)T2 |
| 71 | 1−9.40iT−71T2 |
| 73 | 1+(−10.4−2.80i)T+(63.2+36.5i)T2 |
| 79 | 1+(7.72+4.46i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.36+2.36i)T+83iT2 |
| 89 | 1+(−4.69+8.13i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−5.63−5.63i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.69008686304129940659150667987, −10.92912861893460060651355737737, −10.05108000626380391209442952853, −9.333553990578088463853026629865, −8.056322865336538469323845008582, −7.29608817055208952834753965238, −5.60911884778910876767163940662, −4.27093501290204521599878394672, −2.94804249808838000438936688527, −2.06203022159057065991045146852,
0.44334264377295833310907462448, 3.34769780875126347097863252459, 5.10309085277425152679668956550, 5.39349297853356615406132608961, 7.11460602741501979270377590427, 7.84708361764197707874015632326, 8.131232026403959303081481482155, 9.420363236211734240279961518092, 10.47246328247614792028918407329, 11.50603368754165879704479398349