L(s) = 1 | + (−0.271 − 1.01i)2-s + (0.777 − 0.449i)4-s + (0.310 + 2.21i)5-s + (−1.26 − 2.32i)7-s + (−2.15 − 2.15i)8-s + (2.16 − 0.915i)10-s + (1.52 − 0.880i)11-s + (4.98 − 4.98i)13-s + (−2.00 + 1.91i)14-s + (−0.698 + 1.20i)16-s + (−0.458 − 0.122i)17-s + (2.33 + 1.34i)19-s + (1.23 + 1.58i)20-s + (−1.30 − 1.30i)22-s + (6.30 − 1.69i)23-s + ⋯ |
L(s) = 1 | + (−0.192 − 0.716i)2-s + (0.388 − 0.224i)4-s + (0.138 + 0.990i)5-s + (−0.479 − 0.877i)7-s + (−0.760 − 0.760i)8-s + (0.683 − 0.289i)10-s + (0.460 − 0.265i)11-s + (1.38 − 1.38i)13-s + (−0.537 + 0.512i)14-s + (−0.174 + 0.302i)16-s + (−0.111 − 0.0298i)17-s + (0.535 + 0.309i)19-s + (0.276 + 0.354i)20-s + (−0.278 − 0.278i)22-s + (1.31 − 0.352i)23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.116+0.993i)Λ(2−s)
Λ(s)=(=(315s/2ΓC(s+1/2)L(s)(0.116+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.116+0.993i
|
Analytic conductor: |
2.51528 |
Root analytic conductor: |
1.58596 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :1/2), 0.116+0.993i)
|
Particular Values
L(1) |
≈ |
1.00236−0.891652i |
L(21) |
≈ |
1.00236−0.891652i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.310−2.21i)T |
| 7 | 1+(1.26+2.32i)T |
good | 2 | 1+(0.271+1.01i)T+(−1.73+i)T2 |
| 11 | 1+(−1.52+0.880i)T+(5.5−9.52i)T2 |
| 13 | 1+(−4.98+4.98i)T−13iT2 |
| 17 | 1+(0.458+0.122i)T+(14.7+8.5i)T2 |
| 19 | 1+(−2.33−1.34i)T+(9.5+16.4i)T2 |
| 23 | 1+(−6.30+1.69i)T+(19.9−11.5i)T2 |
| 29 | 1+7.01T+29T2 |
| 31 | 1+(−3.95−6.84i)T+(−15.5+26.8i)T2 |
| 37 | 1+(6.45−1.73i)T+(32.0−18.5i)T2 |
| 41 | 1+6.20iT−41T2 |
| 43 | 1+(2.28−2.28i)T−43iT2 |
| 47 | 1+(−0.393−1.47i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.26−8.45i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−6.17−10.7i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.26−3.91i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.530−1.98i)T+(−58.0−33.5i)T2 |
| 71 | 1+9.79iT−71T2 |
| 73 | 1+(1.45+0.391i)T+(63.2+36.5i)T2 |
| 79 | 1+(−9.08−5.24i)T+(39.5+68.4i)T2 |
| 83 | 1+(−2.07−2.07i)T+83iT2 |
| 89 | 1+(1.64−2.85i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.21−3.21i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98891973598577154168377713234, −10.73964761436443235769481057262, −9.979168038287854244614818926243, −8.850831785982318317912503265358, −7.40935926710054330592941424063, −6.60532091253162385557262733208, −5.71874581594749194568515617885, −3.60122329924608024647323641637, −3.04483942163514059628854231155, −1.16628487039200935812765593635,
1.89597197117038354513015934715, 3.61657265759554096277690878136, 5.14471999768315894877327339257, 6.14572409182681565000113345903, 6.90261446601307368916664607749, 8.206703024199377338571576118864, 9.020849616006131474583868020706, 9.452856773281140720889864223872, 11.37609188272756020703578260650, 11.69174642420970983274282278623