L(s) = 1 | + (−0.695 − 2.59i)2-s + (−4.52 + 2.61i)4-s + (1.27 + 1.83i)5-s + (−1.50 + 2.17i)7-s + (6.14 + 6.14i)8-s + (3.88 − 4.58i)10-s + (3.60 − 2.07i)11-s + (−0.702 + 0.702i)13-s + (6.69 + 2.40i)14-s + (6.44 − 11.1i)16-s + (1.31 + 0.352i)17-s + (5.22 + 3.01i)19-s + (−10.5 − 5.00i)20-s + (−7.90 − 7.90i)22-s + (0.205 − 0.0550i)23-s + ⋯ |
L(s) = 1 | + (−0.492 − 1.83i)2-s + (−2.26 + 1.30i)4-s + (0.569 + 0.822i)5-s + (−0.569 + 0.821i)7-s + (2.17 + 2.17i)8-s + (1.23 − 1.44i)10-s + (1.08 − 0.626i)11-s + (−0.194 + 0.194i)13-s + (1.78 + 0.641i)14-s + (1.61 − 2.79i)16-s + (0.319 + 0.0855i)17-s + (1.19 + 0.692i)19-s + (−2.36 − 1.11i)20-s + (−1.68 − 1.68i)22-s + (0.0428 − 0.0114i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.650 + 0.759i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.650 + 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.852045 - 0.392155i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.852045 - 0.392155i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.27 - 1.83i)T \) |
| 7 | \( 1 + (1.50 - 2.17i)T \) |
good | 2 | \( 1 + (0.695 + 2.59i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (-3.60 + 2.07i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.702 - 0.702i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.31 - 0.352i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.22 - 3.01i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.205 + 0.0550i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 0.879T + 29T^{2} \) |
| 31 | \( 1 + (-4.76 - 8.25i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.13 - 0.840i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 1.25iT - 41T^{2} \) |
| 43 | \( 1 + (4.28 - 4.28i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.0279 - 0.104i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-1.29 + 4.83i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (0.113 + 0.195i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.96 + 10.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.825 + 3.07i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 9.78iT - 71T^{2} \) |
| 73 | \( 1 + (6.60 + 1.77i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-1.88 - 1.08i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.75 - 3.75i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.19 + 12.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.88 - 3.88i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64925182294519774996742178653, −10.56397718179861222124608980444, −9.777532495478175120781824855725, −9.219432240801524212603631958176, −8.237462818600208122361085952590, −6.66405042596414151483771232001, −5.33398666731274032329372758380, −3.59991498204569265807009744707, −2.93374556248231806305337119372, −1.56560471352219215960567494840,
0.934433974218193797945875637973, 4.10913912423200682631138322572, 5.08632895095060095937911089290, 6.11433201013670993709758497956, 6.99311247266673212468857141002, 7.76537417741093139604073121272, 8.956688489385521609811856772929, 9.570655322053557091643685044327, 10.16914540084063677208953730609, 11.97720194985623203652851293476