L(s) = 1 | + (−0.695 − 2.59i)2-s + (−4.52 + 2.61i)4-s + (1.27 + 1.83i)5-s + (−1.50 + 2.17i)7-s + (6.14 + 6.14i)8-s + (3.88 − 4.58i)10-s + (3.60 − 2.07i)11-s + (−0.702 + 0.702i)13-s + (6.69 + 2.40i)14-s + (6.44 − 11.1i)16-s + (1.31 + 0.352i)17-s + (5.22 + 3.01i)19-s + (−10.5 − 5.00i)20-s + (−7.90 − 7.90i)22-s + (0.205 − 0.0550i)23-s + ⋯ |
L(s) = 1 | + (−0.492 − 1.83i)2-s + (−2.26 + 1.30i)4-s + (0.569 + 0.822i)5-s + (−0.569 + 0.821i)7-s + (2.17 + 2.17i)8-s + (1.23 − 1.44i)10-s + (1.08 − 0.626i)11-s + (−0.194 + 0.194i)13-s + (1.78 + 0.641i)14-s + (1.61 − 2.79i)16-s + (0.319 + 0.0855i)17-s + (1.19 + 0.692i)19-s + (−2.36 − 1.11i)20-s + (−1.68 − 1.68i)22-s + (0.0428 − 0.0114i)23-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)(0.650+0.759i)Λ(2−s)
Λ(s)=(=(315s/2ΓC(s+1/2)L(s)(0.650+0.759i)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
0.650+0.759i
|
Analytic conductor: |
2.51528 |
Root analytic conductor: |
1.58596 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ315(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :1/2), 0.650+0.759i)
|
Particular Values
L(1) |
≈ |
0.852045−0.392155i |
L(21) |
≈ |
0.852045−0.392155i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−1.27−1.83i)T |
| 7 | 1+(1.50−2.17i)T |
good | 2 | 1+(0.695+2.59i)T+(−1.73+i)T2 |
| 11 | 1+(−3.60+2.07i)T+(5.5−9.52i)T2 |
| 13 | 1+(0.702−0.702i)T−13iT2 |
| 17 | 1+(−1.31−0.352i)T+(14.7+8.5i)T2 |
| 19 | 1+(−5.22−3.01i)T+(9.5+16.4i)T2 |
| 23 | 1+(−0.205+0.0550i)T+(19.9−11.5i)T2 |
| 29 | 1+0.879T+29T2 |
| 31 | 1+(−4.76−8.25i)T+(−15.5+26.8i)T2 |
| 37 | 1+(3.13−0.840i)T+(32.0−18.5i)T2 |
| 41 | 1+1.25iT−41T2 |
| 43 | 1+(4.28−4.28i)T−43iT2 |
| 47 | 1+(−0.0279−0.104i)T+(−40.7+23.5i)T2 |
| 53 | 1+(−1.29+4.83i)T+(−45.8−26.5i)T2 |
| 59 | 1+(0.113+0.195i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−5.96+10.3i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.825+3.07i)T+(−58.0−33.5i)T2 |
| 71 | 1−9.78iT−71T2 |
| 73 | 1+(6.60+1.77i)T+(63.2+36.5i)T2 |
| 79 | 1+(−1.88−1.08i)T+(39.5+68.4i)T2 |
| 83 | 1+(−3.75−3.75i)T+83iT2 |
| 89 | 1+(−7.19+12.4i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.88−3.88i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64925182294519774996742178653, −10.56397718179861222124608980444, −9.777532495478175120781824855725, −9.219432240801524212603631958176, −8.237462818600208122361085952590, −6.66405042596414151483771232001, −5.33398666731274032329372758380, −3.59991498204569265807009744707, −2.93374556248231806305337119372, −1.56560471352219215960567494840,
0.934433974218193797945875637973, 4.10913912423200682631138322572, 5.08632895095060095937911089290, 6.11433201013670993709758497956, 6.99311247266673212468857141002, 7.76537417741093139604073121272, 8.956688489385521609811856772929, 9.570655322053557091643685044327, 10.16914540084063677208953730609, 11.97720194985623203652851293476