L(s) = 1 | + 4·4-s − 5·5-s − 7·7-s + 13·11-s + 19·13-s + 16·16-s + 29·17-s − 20·20-s + 25·25-s − 28·28-s − 23·29-s + 35·35-s + 52·44-s − 31·47-s + 49·49-s + 76·52-s − 65·55-s + 64·64-s − 95·65-s + 116·68-s − 2·71-s + 34·73-s − 91·77-s − 157·79-s − 80·80-s + 86·83-s − 145·85-s + ⋯ |
L(s) = 1 | + 4-s − 5-s − 7-s + 1.18·11-s + 1.46·13-s + 16-s + 1.70·17-s − 20-s + 25-s − 28-s − 0.793·29-s + 35-s + 1.18·44-s − 0.659·47-s + 49-s + 1.46·52-s − 1.18·55-s + 64-s − 1.46·65-s + 1.70·68-s − 0.0281·71-s + 0.465·73-s − 1.18·77-s − 1.98·79-s − 80-s + 1.03·83-s − 1.70·85-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(315s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
1
|
Analytic conductor: |
8.58312 |
Root analytic conductor: |
2.92969 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ315(244,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :1), 1)
|
Particular Values
L(23) |
≈ |
1.813916491 |
L(21) |
≈ |
1.813916491 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+pT |
| 7 | 1+pT |
good | 2 | (1−pT)(1+pT) |
| 11 | 1−13T+p2T2 |
| 13 | 1−19T+p2T2 |
| 17 | 1−29T+p2T2 |
| 19 | (1−pT)(1+pT) |
| 23 | (1−pT)(1+pT) |
| 29 | 1+23T+p2T2 |
| 31 | (1−pT)(1+pT) |
| 37 | (1−pT)(1+pT) |
| 41 | (1−pT)(1+pT) |
| 43 | (1−pT)(1+pT) |
| 47 | 1+31T+p2T2 |
| 53 | (1−pT)(1+pT) |
| 59 | (1−pT)(1+pT) |
| 61 | (1−pT)(1+pT) |
| 67 | (1−pT)(1+pT) |
| 71 | 1+2T+p2T2 |
| 73 | 1−34T+p2T2 |
| 79 | 1+157T+p2T2 |
| 83 | 1−86T+p2T2 |
| 89 | (1−pT)(1+pT) |
| 97 | 1+149T+p2T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53909938078069870630499054908, −10.69010714352588202670322378227, −9.636233618004979992010515391987, −8.500550253919827948579538127354, −7.48630701906346438116537150418, −6.60451494626098115725564219985, −5.78598926920184600444775710633, −3.81242820160127633922274281554, −3.24380662599066294345935222613, −1.19229059463459525297986245435,
1.19229059463459525297986245435, 3.24380662599066294345935222613, 3.81242820160127633922274281554, 5.78598926920184600444775710633, 6.60451494626098115725564219985, 7.48630701906346438116537150418, 8.500550253919827948579538127354, 9.636233618004979992010515391987, 10.69010714352588202670322378227, 11.53909938078069870630499054908