Properties

Label 2-315-35.34-c2-0-15
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $8.58312$
Root an. cond. $2.92969$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 5·5-s − 7·7-s + 13·11-s + 19·13-s + 16·16-s + 29·17-s − 20·20-s + 25·25-s − 28·28-s − 23·29-s + 35·35-s + 52·44-s − 31·47-s + 49·49-s + 76·52-s − 65·55-s + 64·64-s − 95·65-s + 116·68-s − 2·71-s + 34·73-s − 91·77-s − 157·79-s − 80·80-s + 86·83-s − 145·85-s + ⋯
L(s)  = 1  + 4-s − 5-s − 7-s + 1.18·11-s + 1.46·13-s + 16-s + 1.70·17-s − 20-s + 25-s − 28-s − 0.793·29-s + 35-s + 1.18·44-s − 0.659·47-s + 49-s + 1.46·52-s − 1.18·55-s + 64-s − 1.46·65-s + 1.70·68-s − 0.0281·71-s + 0.465·73-s − 1.18·77-s − 1.98·79-s − 80-s + 1.03·83-s − 1.70·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(8.58312\)
Root analytic conductor: \(2.92969\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{315} (244, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.813916491\)
\(L(\frac12)\) \(\approx\) \(1.813916491\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p T \)
7 \( 1 + p T \)
good2 \( ( 1 - p T )( 1 + p T ) \)
11 \( 1 - 13 T + p^{2} T^{2} \)
13 \( 1 - 19 T + p^{2} T^{2} \)
17 \( 1 - 29 T + p^{2} T^{2} \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( ( 1 - p T )( 1 + p T ) \)
29 \( 1 + 23 T + p^{2} T^{2} \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( ( 1 - p T )( 1 + p T ) \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( ( 1 - p T )( 1 + p T ) \)
47 \( 1 + 31 T + p^{2} T^{2} \)
53 \( ( 1 - p T )( 1 + p T ) \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( ( 1 - p T )( 1 + p T ) \)
71 \( 1 + 2 T + p^{2} T^{2} \)
73 \( 1 - 34 T + p^{2} T^{2} \)
79 \( 1 + 157 T + p^{2} T^{2} \)
83 \( 1 - 86 T + p^{2} T^{2} \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( 1 + 149 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53909938078069870630499054908, −10.69010714352588202670322378227, −9.636233618004979992010515391987, −8.500550253919827948579538127354, −7.48630701906346438116537150418, −6.60451494626098115725564219985, −5.78598926920184600444775710633, −3.81242820160127633922274281554, −3.24380662599066294345935222613, −1.19229059463459525297986245435, 1.19229059463459525297986245435, 3.24380662599066294345935222613, 3.81242820160127633922274281554, 5.78598926920184600444775710633, 6.60451494626098115725564219985, 7.48630701906346438116537150418, 8.500550253919827948579538127354, 9.636233618004979992010515391987, 10.69010714352588202670322378227, 11.53909938078069870630499054908

Graph of the $Z$-function along the critical line