Properties

Label 2-3168-1.1-c1-0-19
Degree $2$
Conductor $3168$
Sign $1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 11-s − 2·13-s + 2·19-s − 25-s + 8·29-s + 4·31-s + 4·35-s − 6·37-s + 4·41-s + 6·43-s + 8·47-s − 3·49-s + 6·53-s + 2·55-s + 4·59-s − 6·61-s − 4·65-s + 4·67-s + 8·71-s − 10·73-s + 2·77-s − 14·79-s + 8·83-s − 2·89-s − 4·91-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 0.301·11-s − 0.554·13-s + 0.458·19-s − 1/5·25-s + 1.48·29-s + 0.718·31-s + 0.676·35-s − 0.986·37-s + 0.624·41-s + 0.914·43-s + 1.16·47-s − 3/7·49-s + 0.824·53-s + 0.269·55-s + 0.520·59-s − 0.768·61-s − 0.496·65-s + 0.488·67-s + 0.949·71-s − 1.17·73-s + 0.227·77-s − 1.57·79-s + 0.878·83-s − 0.211·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.545061417\)
\(L(\frac12)\) \(\approx\) \(2.545061417\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.741432993876465800467764479640, −7.937839645410758533791863487956, −7.19306300393180880258724467565, −6.36356837214073433395665681088, −5.61034403221069151944874816863, −4.90005158239302952603845530456, −4.11178662790885532582576400158, −2.86651983749511535818482386419, −2.04996257344413336974576420239, −1.01951695186635853569797311441, 1.01951695186635853569797311441, 2.04996257344413336974576420239, 2.86651983749511535818482386419, 4.11178662790885532582576400158, 4.90005158239302952603845530456, 5.61034403221069151944874816863, 6.36356837214073433395665681088, 7.19306300393180880258724467565, 7.937839645410758533791863487956, 8.741432993876465800467764479640

Graph of the $Z$-function along the critical line