Properties

Label 2-3168-1.1-c1-0-33
Degree $2$
Conductor $3168$
Sign $-1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 11-s + 2·17-s − 6·19-s + 6·23-s − 25-s + 2·29-s − 2·37-s − 2·41-s − 6·43-s + 6·47-s − 7·49-s + 2·53-s − 2·55-s + 8·61-s − 12·67-s − 6·71-s + 6·73-s − 12·79-s − 12·83-s − 4·85-s − 8·89-s + 12·95-s + 6·97-s − 2·101-s − 12·107-s + 4·113-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.301·11-s + 0.485·17-s − 1.37·19-s + 1.25·23-s − 1/5·25-s + 0.371·29-s − 0.328·37-s − 0.312·41-s − 0.914·43-s + 0.875·47-s − 49-s + 0.274·53-s − 0.269·55-s + 1.02·61-s − 1.46·67-s − 0.712·71-s + 0.702·73-s − 1.35·79-s − 1.31·83-s − 0.433·85-s − 0.847·89-s + 1.23·95-s + 0.609·97-s − 0.199·101-s − 1.16·107-s + 0.376·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.422830637318465495529175571444, −7.52836968068358160938962254123, −6.90231048077484383576044392193, −6.11937289864350764583968354951, −5.12891869990477172704763936246, −4.32434755255141440842877247524, −3.61400534899424541377714722299, −2.68380740919008903645509592858, −1.39742958097402412766819249463, 0, 1.39742958097402412766819249463, 2.68380740919008903645509592858, 3.61400534899424541377714722299, 4.32434755255141440842877247524, 5.12891869990477172704763936246, 6.11937289864350764583968354951, 6.90231048077484383576044392193, 7.52836968068358160938962254123, 8.422830637318465495529175571444

Graph of the $Z$-function along the critical line