Properties

Label 2-3192-1.1-c1-0-13
Degree $2$
Conductor $3192$
Sign $1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 7-s + 9-s + 4·11-s − 6·13-s − 2·15-s + 6·17-s + 19-s + 21-s + 8·23-s − 25-s − 27-s − 6·29-s − 4·33-s − 2·35-s − 2·37-s + 6·39-s + 6·41-s − 4·43-s + 2·45-s + 4·47-s + 49-s − 6·51-s + 2·53-s + 8·55-s − 57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 1.66·13-s − 0.516·15-s + 1.45·17-s + 0.229·19-s + 0.218·21-s + 1.66·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.696·33-s − 0.338·35-s − 0.328·37-s + 0.960·39-s + 0.937·41-s − 0.609·43-s + 0.298·45-s + 0.583·47-s + 1/7·49-s − 0.840·51-s + 0.274·53-s + 1.07·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.821773447\)
\(L(\frac12)\) \(\approx\) \(1.821773447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.963775622643969413086392004501, −7.66993740668373761303933835628, −7.09894490620541742508641698691, −6.40806092386379345620843510689, −5.51505027902262321429777131328, −5.13009745693058363129763091752, −3.99865329181363050042784951058, −3.02919764202190103672697538221, −1.94542814344019189651266846425, −0.861896809656660763138675843698, 0.861896809656660763138675843698, 1.94542814344019189651266846425, 3.02919764202190103672697538221, 3.99865329181363050042784951058, 5.13009745693058363129763091752, 5.51505027902262321429777131328, 6.40806092386379345620843510689, 7.09894490620541742508641698691, 7.66993740668373761303933835628, 8.963775622643969413086392004501

Graph of the $Z$-function along the critical line