L(s) = 1 | + (0.766 + 0.642i)2-s + (0.642 − 0.766i)3-s + (0.173 + 0.984i)4-s + (1.50 + 0.266i)5-s + (0.984 − 0.173i)6-s + (−0.5 − 0.866i)7-s + (−0.500 + 0.866i)8-s + (−0.173 − 0.984i)9-s + (0.984 + 1.17i)10-s + (0.866 + 0.500i)12-s + (−0.118 + 0.326i)13-s + (0.173 − 0.984i)14-s + (1.17 − 0.984i)15-s + (−0.939 + 0.342i)16-s + (0.500 − 0.866i)18-s + (−0.642 + 0.766i)19-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)2-s + (0.642 − 0.766i)3-s + (0.173 + 0.984i)4-s + (1.50 + 0.266i)5-s + (0.984 − 0.173i)6-s + (−0.5 − 0.866i)7-s + (−0.500 + 0.866i)8-s + (−0.173 − 0.984i)9-s + (0.984 + 1.17i)10-s + (0.866 + 0.500i)12-s + (−0.118 + 0.326i)13-s + (0.173 − 0.984i)14-s + (1.17 − 0.984i)15-s + (−0.939 + 0.342i)16-s + (0.500 − 0.866i)18-s + (−0.642 + 0.766i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.811785622\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.811785622\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 - 0.642i)T \) |
| 3 | \( 1 + (-0.642 + 0.766i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.642 - 0.766i)T \) |
good | 5 | \( 1 + (-1.50 - 0.266i)T + (0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.118 - 0.326i)T + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (-1.26 + 0.223i)T + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.524 + 0.439i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (-0.118 - 0.673i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.326 + 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (0.592 + 1.62i)T + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (1.62 - 0.939i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.859295475605796413847640324422, −7.900489967927115779190354845658, −7.18780932890153139609785933188, −6.51828935494866110683378979845, −6.19241149994916940387049266903, −5.24841271232930080551240095211, −4.18992108939880932943756093271, −3.26099658242100543389622156632, −2.51309619547779340185240810182, −1.54837548671595898967083528712,
1.60589006947095946729717713245, 2.60127565340429153397172884975, 2.90478187186551185716107912363, 4.11187673109320410880182398467, 5.09402192467690183025455248771, 5.44042058576542142959957938599, 6.23484028392094730539457824775, 7.06335125046196356972403798844, 8.564519644605829795806595742743, 9.025573795553814602669429538789