L(s) = 1 | + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.660−0.750i)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.660−0.750i)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
−0.660−0.750i
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3192(2309,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), −0.660−0.750i)
|
Particular Values
L(21) |
≈ |
1.472629763 |
L(21) |
≈ |
1.472629763 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173−0.984i)T |
| 3 | 1+(−0.984+0.173i)T |
| 7 | 1+(0.5−0.866i)T |
| 19 | 1+(0.984−0.173i)T |
good | 5 | 1+(−0.118+0.326i)T+(−0.766−0.642i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(1.20−1.43i)T+(−0.173−0.984i)T2 |
| 17 | 1+(−0.939+0.342i)T2 |
| 23 | 1+(−0.673−1.85i)T+(−0.766+0.642i)T2 |
| 29 | 1+(0.939+0.342i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.173+0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(−0.939−0.342i)T2 |
| 53 | 1+(−0.766+0.642i)T2 |
| 59 | 1+(−0.223−1.26i)T+(−0.939+0.342i)T2 |
| 61 | 1+(−1.20+0.439i)T+(0.766−0.642i)T2 |
| 67 | 1+(−0.939−0.342i)T2 |
| 71 | 1+(−1.43−0.524i)T+(0.766+0.642i)T2 |
| 73 | 1+(−0.173+0.984i)T2 |
| 79 | 1+(1.11+1.32i)T+(−0.173+0.984i)T2 |
| 83 | 1+(1.32+0.766i)T+(0.5+0.866i)T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(−0.939+0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.848031449440135108281484647592, −8.593330833242536752487287109614, −7.41472446371091251969584677248, −7.08222427936977934410203039327, −6.25494364046094153159548149822, −5.32399920924301241775982574473, −4.57894340193634725151414673070, −3.71677860404665465888075560897, −2.78026673657496065111108622509, −1.72328470186867443804892806328,
0.74598011841606071217000921999, 2.37853251376917190635343652448, 2.77369172208854216297896247568, 3.65518345923739576531744128793, 4.49028613397443116777618147695, 5.10836269818787684945121246636, 6.44218675897300695100281393218, 7.15244902828603055090120967831, 8.131917916663559748983320903394, 8.589406089571826328034013703402