Properties

Label 2-3192-3192.2309-c0-0-2
Degree 22
Conductor 31923192
Sign 0.6600.750i-0.660 - 0.750i
Analytic cond. 1.593011.59301
Root an. cond. 1.262141.26214
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯
L(s)  = 1  + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯

Functional equation

Λ(s)=(3192s/2ΓC(s)L(s)=((0.6600.750i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3192s/2ΓC(s)L(s)=((0.6600.750i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 31923192    =    2337192^{3} \cdot 3 \cdot 7 \cdot 19
Sign: 0.6600.750i-0.660 - 0.750i
Analytic conductor: 1.593011.59301
Root analytic conductor: 1.262141.26214
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3192(2309,)\chi_{3192} (2309, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3192, ( :0), 0.6600.750i)(2,\ 3192,\ (\ :0),\ -0.660 - 0.750i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.4726297631.472629763
L(12)L(\frac12) \approx 1.4726297631.472629763
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
3 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
good5 1+(0.118+0.326i)T+(0.7660.642i)T2 1 + (-0.118 + 0.326i)T + (-0.766 - 0.642i)T^{2}
11 1+(0.5+0.866i)T2 1 + (-0.5 + 0.866i)T^{2}
13 1+(1.201.43i)T+(0.1730.984i)T2 1 + (1.20 - 1.43i)T + (-0.173 - 0.984i)T^{2}
17 1+(0.939+0.342i)T2 1 + (-0.939 + 0.342i)T^{2}
23 1+(0.6731.85i)T+(0.766+0.642i)T2 1 + (-0.673 - 1.85i)T + (-0.766 + 0.642i)T^{2}
29 1+(0.939+0.342i)T2 1 + (0.939 + 0.342i)T^{2}
31 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
37 1+T2 1 + T^{2}
41 1+(0.173+0.984i)T2 1 + (-0.173 + 0.984i)T^{2}
43 1+(0.7660.642i)T2 1 + (-0.766 - 0.642i)T^{2}
47 1+(0.9390.342i)T2 1 + (-0.939 - 0.342i)T^{2}
53 1+(0.766+0.642i)T2 1 + (-0.766 + 0.642i)T^{2}
59 1+(0.2231.26i)T+(0.939+0.342i)T2 1 + (-0.223 - 1.26i)T + (-0.939 + 0.342i)T^{2}
61 1+(1.20+0.439i)T+(0.7660.642i)T2 1 + (-1.20 + 0.439i)T + (0.766 - 0.642i)T^{2}
67 1+(0.9390.342i)T2 1 + (-0.939 - 0.342i)T^{2}
71 1+(1.430.524i)T+(0.766+0.642i)T2 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2}
73 1+(0.173+0.984i)T2 1 + (-0.173 + 0.984i)T^{2}
79 1+(1.11+1.32i)T+(0.173+0.984i)T2 1 + (1.11 + 1.32i)T + (-0.173 + 0.984i)T^{2}
83 1+(1.32+0.766i)T+(0.5+0.866i)T2 1 + (1.32 + 0.766i)T + (0.5 + 0.866i)T^{2}
89 1+(0.1730.984i)T2 1 + (-0.173 - 0.984i)T^{2}
97 1+(0.939+0.342i)T2 1 + (-0.939 + 0.342i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.848031449440135108281484647592, −8.593330833242536752487287109614, −7.41472446371091251969584677248, −7.08222427936977934410203039327, −6.25494364046094153159548149822, −5.32399920924301241775982574473, −4.57894340193634725151414673070, −3.71677860404665465888075560897, −2.78026673657496065111108622509, −1.72328470186867443804892806328, 0.74598011841606071217000921999, 2.37853251376917190635343652448, 2.77369172208854216297896247568, 3.65518345923739576531744128793, 4.49028613397443116777618147695, 5.10836269818787684945121246636, 6.44218675897300695100281393218, 7.15244902828603055090120967831, 8.131917916663559748983320903394, 8.589406089571826328034013703402

Graph of the ZZ-function along the critical line