L(s) = 1 | + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + (0.984 − 0.173i)3-s + (−0.939 + 0.342i)4-s + (0.118 − 0.326i)5-s + (0.342 + 0.939i)6-s + (−0.5 + 0.866i)7-s + (−0.5 − 0.866i)8-s + (0.939 − 0.342i)9-s + (0.342 + 0.0603i)10-s + (−0.866 + 0.5i)12-s + (−1.20 + 1.43i)13-s + (−0.939 − 0.342i)14-s + (0.0603 − 0.342i)15-s + (0.766 − 0.642i)16-s + (0.5 + 0.866i)18-s + (−0.984 + 0.173i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.472629763\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.472629763\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.173 - 0.984i)T \) |
| 3 | \( 1 + (-0.984 + 0.173i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.984 - 0.173i)T \) |
good | 5 | \( 1 + (-0.118 + 0.326i)T + (-0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.20 - 1.43i)T + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.673 - 1.85i)T + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.223 - 1.26i)T + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-1.20 + 0.439i)T + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (1.11 + 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (1.32 + 0.766i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.848031449440135108281484647592, −8.593330833242536752487287109614, −7.41472446371091251969584677248, −7.08222427936977934410203039327, −6.25494364046094153159548149822, −5.32399920924301241775982574473, −4.57894340193634725151414673070, −3.71677860404665465888075560897, −2.78026673657496065111108622509, −1.72328470186867443804892806328,
0.74598011841606071217000921999, 2.37853251376917190635343652448, 2.77369172208854216297896247568, 3.65518345923739576531744128793, 4.49028613397443116777618147695, 5.10836269818787684945121246636, 6.44218675897300695100281393218, 7.15244902828603055090120967831, 8.131917916663559748983320903394, 8.589406089571826328034013703402