L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.342 − 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.766 − 0.642i)6-s + (0.173 − 0.984i)7-s − 0.999i·8-s + (−0.766 + 0.642i)9-s + (−0.984 − 0.173i)12-s − 0.347i·13-s + (−0.342 − 0.939i)14-s + (−0.5 − 0.866i)16-s + (0.939 − 1.62i)17-s + (−0.342 + 0.939i)18-s + (−0.866 + 0.5i)19-s + (−0.984 + 0.173i)21-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.342 − 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.766 − 0.642i)6-s + (0.173 − 0.984i)7-s − 0.999i·8-s + (−0.766 + 0.642i)9-s + (−0.984 − 0.173i)12-s − 0.347i·13-s + (−0.342 − 0.939i)14-s + (−0.5 − 0.866i)16-s + (0.939 − 1.62i)17-s + (−0.342 + 0.939i)18-s + (−0.866 + 0.5i)19-s + (−0.984 + 0.173i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.954 + 0.296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.954 + 0.296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.767181358\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.767181358\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 0.347iT - T^{2} \) |
| 17 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.592 + 0.342i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - 1.53iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1.62 + 0.939i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.342 + 0.592i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.642 + 1.11i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.70 - 0.984i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.254780545097994750962261716935, −7.54627002111252365473592591753, −6.85865342049085588823098523019, −6.34359703023976138771812679321, −5.12563760783831688890445186903, −4.98928676468412727519427301230, −3.60773897327391233123917194239, −2.93921234166794158473293545477, −1.75073290668055382642974212076, −0.845989587367407715093163783675,
2.08906710719566979541769130331, 3.00639047977822814268995809553, 4.03479657514882606983227935792, 4.47572824154237059185446252359, 5.49866311781260380780542466930, 5.99592619726116186175617971009, 6.49496718655254726117190651521, 7.83630977914682557326175293420, 8.311578903065941209930163194144, 9.126404926942034392960838938061