L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.342 − 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.766 − 0.642i)6-s + (0.173 − 0.984i)7-s − 0.999i·8-s + (−0.766 + 0.642i)9-s + (−0.984 − 0.173i)12-s − 0.347i·13-s + (−0.342 − 0.939i)14-s + (−0.5 − 0.866i)16-s + (0.939 − 1.62i)17-s + (−0.342 + 0.939i)18-s + (−0.866 + 0.5i)19-s + (−0.984 + 0.173i)21-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.342 − 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.766 − 0.642i)6-s + (0.173 − 0.984i)7-s − 0.999i·8-s + (−0.766 + 0.642i)9-s + (−0.984 − 0.173i)12-s − 0.347i·13-s + (−0.342 − 0.939i)14-s + (−0.5 − 0.866i)16-s + (0.939 − 1.62i)17-s + (−0.342 + 0.939i)18-s + (−0.866 + 0.5i)19-s + (−0.984 + 0.173i)21-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.954+0.296i)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.954+0.296i)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
−0.954+0.296i
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3192(2621,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), −0.954+0.296i)
|
Particular Values
L(21) |
≈ |
1.767181358 |
L(21) |
≈ |
1.767181358 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.342+0.939i)T |
| 7 | 1+(−0.173+0.984i)T |
| 19 | 1+(0.866−0.5i)T |
good | 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+0.347iT−T2 |
| 17 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.592+0.342i)T+(0.5−0.866i)T2 |
| 29 | 1−1.53iT−T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1+(1.62+0.939i)T+(0.5+0.866i)T2 |
| 59 | 1+(−0.342+0.592i)T+(−0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−0.642+1.11i)T+(−0.5−0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(−1.70−0.984i)T+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.254780545097994750962261716935, −7.54627002111252365473592591753, −6.85865342049085588823098523019, −6.34359703023976138771812679321, −5.12563760783831688890445186903, −4.98928676468412727519427301230, −3.60773897327391233123917194239, −2.93921234166794158473293545477, −1.75073290668055382642974212076, −0.845989587367407715093163783675,
2.08906710719566979541769130331, 3.00639047977822814268995809553, 4.03479657514882606983227935792, 4.47572824154237059185446252359, 5.49866311781260380780542466930, 5.99592619726116186175617971009, 6.49496718655254726117190651521, 7.83630977914682557326175293420, 8.311578903065941209930163194144, 9.126404926942034392960838938061