L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−1.5 − 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s − 0.999·12-s + (−1.5 + 0.866i)13-s + (0.5 − 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−1.5 − 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s − 0.999·12-s + (−1.5 + 0.866i)13-s + (0.5 − 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2401333471\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2401333471\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 1.73iT - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.810452934543821562855604267071, −8.276895623343262516528129453027, −7.48641505484651745734630523063, −7.03876555467383651228061988423, −6.44896327108019872231178810125, −5.30493626042269676763051414738, −4.45627709155130449637918834369, −3.68691414023360777278620261986, −2.44232183434193954111126980024, −0.992901999810016422984879924284,
0.19881365378083499981527756176, 2.58276311525575251510711829252, 3.00475726026346228304954978557, 3.61294623114665113948270869397, 4.44840249652701646765990762909, 5.20915196316881428722451522688, 6.82119189410022224671334497687, 7.43844053830505976544585260267, 7.927657198259334592580998090980, 8.902987144442019390671074173631