L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−1.5 − 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s − 0.999·12-s + (−1.5 + 0.866i)13-s + (0.5 − 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−1.5 − 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s − 0.999·12-s + (−1.5 + 0.866i)13-s + (0.5 − 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.0977−0.995i)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)(−0.0977−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
−0.0977−0.995i
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3192(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), −0.0977−0.995i)
|
Particular Values
L(21) |
≈ |
0.2401333471 |
L(21) |
≈ |
0.2401333471 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(−0.5+0.866i)T |
| 7 | 1+T |
| 19 | 1+(0.5−0.866i)T |
good | 5 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 11 | 1+T2 |
| 13 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−1.73iT−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.810452934543821562855604267071, −8.276895623343262516528129453027, −7.48641505484651745734630523063, −7.03876555467383651228061988423, −6.44896327108019872231178810125, −5.30493626042269676763051414738, −4.45627709155130449637918834369, −3.68691414023360777278620261986, −2.44232183434193954111126980024, −0.992901999810016422984879924284,
0.19881365378083499981527756176, 2.58276311525575251510711829252, 3.00475726026346228304954978557, 3.61294623114665113948270869397, 4.44840249652701646765990762909, 5.20915196316881428722451522688, 6.82119189410022224671334497687, 7.43844053830505976544585260267, 7.927657198259334592580998090980, 8.902987144442019390671074173631