L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 + 0.499i)6-s + 7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (−0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (0.866 + 0.5i)19-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 + 0.499i)6-s + 7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (−0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (0.866 + 0.5i)19-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)(0.0977+0.995i)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)(0.0977+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
0.0977+0.995i
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3192(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), 0.0977+0.995i)
|
Particular Values
L(21) |
≈ |
1.496490422 |
L(21) |
≈ |
1.496490422 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(0.866+0.5i)T |
| 7 | 1−T |
| 19 | 1+(−0.866−0.5i)T |
good | 5 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+T2 |
| 13 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 61 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+iT−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.861498761055730257390243871084, −7.82322309861756655983741660636, −6.92797996854415093887789552043, −6.31956014410785507253996313075, −5.31833714962903270830358321995, −5.06688982887023827080769456020, −4.11897346773153145507215001079, −2.71865252490534595979859692798, −2.04451999782988839908146878045, −1.12487064132438352961850515991,
1.17107950347365331402196183306, 2.71815908182325246368245657223, 3.87886769325986953374021911015, 4.85401896802809214113491674251, 5.32542584834150263108818304527, 5.56143716035259711039699030330, 6.75518535107221849194960828199, 7.31487290995291755200036353332, 8.159561332948364338982196930529, 9.172393271590976973098316937339