L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 + 0.499i)6-s + 7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (−0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (0.866 + 0.5i)19-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 + 0.499i)6-s + 7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (−0.866 + 0.5i)13-s + (0.5 − 0.866i)14-s + (−0.499 − 0.866i)15-s + (−0.5 + 0.866i)16-s + 0.999·18-s + (0.866 + 0.5i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.496490422\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.496490422\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + iT - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.861498761055730257390243871084, −7.82322309861756655983741660636, −6.92797996854415093887789552043, −6.31956014410785507253996313075, −5.31833714962903270830358321995, −5.06688982887023827080769456020, −4.11897346773153145507215001079, −2.71865252490534595979859692798, −2.04451999782988839908146878045, −1.12487064132438352961850515991,
1.17107950347365331402196183306, 2.71815908182325246368245657223, 3.87886769325986953374021911015, 4.85401896802809214113491674251, 5.32542584834150263108818304527, 5.56143716035259711039699030330, 6.75518535107221849194960828199, 7.31487290995291755200036353332, 8.159561332948364338982196930529, 9.172393271590976973098316937339