L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 12-s − 14-s + 16-s + 18-s − 19-s − 21-s + 24-s + 25-s + 27-s − 28-s + 32-s + 36-s − 38-s − 42-s + 48-s + 49-s + 50-s + 54-s − 56-s − 57-s + ⋯ |
L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 12-s − 14-s + 16-s + 18-s − 19-s − 21-s + 24-s + 25-s + 27-s − 28-s + 32-s + 36-s − 38-s − 42-s + 48-s + 49-s + 50-s + 54-s − 56-s − 57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.144043159\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.144043159\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 + T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 + T )^{2} \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 + T )^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.871871187572030857875992288122, −7.978908528074377906828360286512, −7.22591376078376709145205018755, −6.57094137252005987736383245516, −5.92682665195104732043960205839, −4.74539400389285829018088217181, −4.11995077500143505516475260619, −3.19785295686533596890691623575, −2.70454960633492071904108972221, −1.59201705226022670499623273205,
1.59201705226022670499623273205, 2.70454960633492071904108972221, 3.19785295686533596890691623575, 4.11995077500143505516475260619, 4.74539400389285829018088217181, 5.92682665195104732043960205839, 6.57094137252005987736383245516, 7.22591376078376709145205018755, 7.978908528074377906828360286512, 8.871871187572030857875992288122