L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 12-s − 14-s + 16-s + 18-s − 19-s − 21-s + 24-s + 25-s + 27-s − 28-s + 32-s + 36-s − 38-s − 42-s + 48-s + 49-s + 50-s + 54-s − 56-s − 57-s + ⋯ |
L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 12-s − 14-s + 16-s + 18-s − 19-s − 21-s + 24-s + 25-s + 27-s − 28-s + 32-s + 36-s − 38-s − 42-s + 48-s + 49-s + 50-s + 54-s − 56-s − 57-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
1
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ3192(797,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), 1)
|
Particular Values
L(21) |
≈ |
3.144043159 |
L(21) |
≈ |
3.144043159 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | (1−T)(1+T) |
| 11 | 1+T2 |
| 13 | (1−T)(1+T) |
| 17 | 1+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | 1+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1+T)2 |
| 61 | (1+T)2 |
| 67 | 1+T2 |
| 71 | (1+T)2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.871871187572030857875992288122, −7.978908528074377906828360286512, −7.22591376078376709145205018755, −6.57094137252005987736383245516, −5.92682665195104732043960205839, −4.74539400389285829018088217181, −4.11995077500143505516475260619, −3.19785295686533596890691623575, −2.70454960633492071904108972221, −1.59201705226022670499623273205,
1.59201705226022670499623273205, 2.70454960633492071904108972221, 3.19785295686533596890691623575, 4.11995077500143505516475260619, 4.74539400389285829018088217181, 5.92682665195104732043960205839, 6.57094137252005987736383245516, 7.22591376078376709145205018755, 7.978908528074377906828360286512, 8.871871187572030857875992288122