Properties

Label 2-31e2-1.1-c1-0-16
Degree $2$
Conductor $961$
Sign $1$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.85·2-s − 0.499·3-s + 1.42·4-s + 1.20·5-s + 0.923·6-s + 3.73·7-s + 1.06·8-s − 2.75·9-s − 2.23·10-s + 1.85·11-s − 0.710·12-s + 5.18·13-s − 6.90·14-s − 0.602·15-s − 4.82·16-s + 5.66·17-s + 5.08·18-s − 1.43·19-s + 1.71·20-s − 1.86·21-s − 3.43·22-s + 3.54·23-s − 0.532·24-s − 3.54·25-s − 9.59·26-s + 2.87·27-s + 5.31·28-s + ⋯
L(s)  = 1  − 1.30·2-s − 0.288·3-s + 0.711·4-s + 0.539·5-s + 0.377·6-s + 1.41·7-s + 0.377·8-s − 0.916·9-s − 0.706·10-s + 0.559·11-s − 0.205·12-s + 1.43·13-s − 1.84·14-s − 0.155·15-s − 1.20·16-s + 1.37·17-s + 1.19·18-s − 0.330·19-s + 0.384·20-s − 0.406·21-s − 0.732·22-s + 0.739·23-s − 0.108·24-s − 0.708·25-s − 1.88·26-s + 0.552·27-s + 1.00·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $1$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9810142729\)
\(L(\frac12)\) \(\approx\) \(0.9810142729\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + 1.85T + 2T^{2} \)
3 \( 1 + 0.499T + 3T^{2} \)
5 \( 1 - 1.20T + 5T^{2} \)
7 \( 1 - 3.73T + 7T^{2} \)
11 \( 1 - 1.85T + 11T^{2} \)
13 \( 1 - 5.18T + 13T^{2} \)
17 \( 1 - 5.66T + 17T^{2} \)
19 \( 1 + 1.43T + 19T^{2} \)
23 \( 1 - 3.54T + 23T^{2} \)
29 \( 1 + 1.37T + 29T^{2} \)
37 \( 1 + 4.50T + 37T^{2} \)
41 \( 1 + 4.71T + 41T^{2} \)
43 \( 1 + 6.55T + 43T^{2} \)
47 \( 1 + 4.22T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 + 2.18T + 59T^{2} \)
61 \( 1 - 2.68T + 61T^{2} \)
67 \( 1 - 2.88T + 67T^{2} \)
71 \( 1 - 9.00T + 71T^{2} \)
73 \( 1 - 4.20T + 73T^{2} \)
79 \( 1 + 11.2T + 79T^{2} \)
83 \( 1 - 10.4T + 83T^{2} \)
89 \( 1 - 2.70T + 89T^{2} \)
97 \( 1 + 8.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01743453954818754656160105467, −9.004729405117878623452737724385, −8.455607929143334429825617037535, −7.913181486647085845023613437802, −6.78967458701960488267555069425, −5.76333451967706956360659303813, −4.99080316735972579070431826399, −3.61225763734995469468947103785, −1.91189006466009234453826698555, −1.06112232391071405361692778038, 1.06112232391071405361692778038, 1.91189006466009234453826698555, 3.61225763734995469468947103785, 4.99080316735972579070431826399, 5.76333451967706956360659303813, 6.78967458701960488267555069425, 7.913181486647085845023613437802, 8.455607929143334429825617037535, 9.004729405117878623452737724385, 10.01743453954818754656160105467

Graph of the $Z$-function along the critical line