L(s) = 1 | + 2.49·2-s − 2.47·3-s + 4.23·4-s − 1.14·5-s − 6.17·6-s + 0.265·7-s + 5.56·8-s + 3.11·9-s − 2.86·10-s − 0.291·11-s − 10.4·12-s + 4.52·13-s + 0.661·14-s + 2.84·15-s + 5.44·16-s + 5.49·17-s + 7.77·18-s + 6.95·19-s − 4.86·20-s − 0.655·21-s − 0.727·22-s + 2.96·23-s − 13.7·24-s − 3.67·25-s + 11.2·26-s − 0.286·27-s + 1.12·28-s + ⋯ |
L(s) = 1 | + 1.76·2-s − 1.42·3-s + 2.11·4-s − 0.513·5-s − 2.52·6-s + 0.100·7-s + 1.96·8-s + 1.03·9-s − 0.907·10-s − 0.0879·11-s − 3.02·12-s + 1.25·13-s + 0.176·14-s + 0.733·15-s + 1.36·16-s + 1.33·17-s + 1.83·18-s + 1.59·19-s − 1.08·20-s − 0.143·21-s − 0.155·22-s + 0.618·23-s − 2.81·24-s − 0.735·25-s + 2.21·26-s − 0.0552·27-s + 0.211·28-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.881440565 |
L(21) |
≈ |
2.881440565 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1−2.49T+2T2 |
| 3 | 1+2.47T+3T2 |
| 5 | 1+1.14T+5T2 |
| 7 | 1−0.265T+7T2 |
| 11 | 1+0.291T+11T2 |
| 13 | 1−4.52T+13T2 |
| 17 | 1−5.49T+17T2 |
| 19 | 1−6.95T+19T2 |
| 23 | 1−2.96T+23T2 |
| 29 | 1+3.32T+29T2 |
| 37 | 1+4.07T+37T2 |
| 41 | 1−7.49T+41T2 |
| 43 | 1−8.05T+43T2 |
| 47 | 1−5.51T+47T2 |
| 53 | 1+4.75T+53T2 |
| 59 | 1+2.35T+59T2 |
| 61 | 1+10.0T+61T2 |
| 67 | 1+3.58T+67T2 |
| 71 | 1−10.8T+71T2 |
| 73 | 1+2.27T+73T2 |
| 79 | 1+3.79T+79T2 |
| 83 | 1−2.79T+83T2 |
| 89 | 1+3.20T+89T2 |
| 97 | 1−2.01T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71266341049430674537478092850, −9.428833947251081132681148322140, −7.83244653316419576330617568411, −7.14490477213935664124002624052, −6.04396100125625085608745799301, −5.67179948428029802495443929114, −4.91735484067636694032458029244, −3.91267720446921018587512311540, −3.13013962216912147376389114347, −1.22757920293218799713496602599,
1.22757920293218799713496602599, 3.13013962216912147376389114347, 3.91267720446921018587512311540, 4.91735484067636694032458029244, 5.67179948428029802495443929114, 6.04396100125625085608745799301, 7.14490477213935664124002624052, 7.83244653316419576330617568411, 9.428833947251081132681148322140, 10.71266341049430674537478092850