L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.874 + 2.68i)3-s + (0.809 − 0.587i)4-s + 2.82·6-s + (−3.23 + 2.35i)7-s + (−2.42 − 1.76i)8-s + (−4.04 − 2.93i)9-s + (2.28 − 1.66i)11-s + (0.874 + 2.68i)12-s + (−0.437 + 1.34i)13-s + (3.23 + 2.35i)14-s + (−0.309 + 0.951i)16-s + (1.14 + 0.831i)17-s + (−1.54 + 4.75i)18-s + (−1.23 − 3.80i)19-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (−0.504 + 1.55i)3-s + (0.404 − 0.293i)4-s + 1.15·6-s + (−1.22 + 0.888i)7-s + (−0.858 − 0.623i)8-s + (−1.34 − 0.979i)9-s + (0.689 − 0.501i)11-s + (0.252 + 0.776i)12-s + (−0.121 + 0.373i)13-s + (0.864 + 0.628i)14-s + (−0.0772 + 0.237i)16-s + (0.277 + 0.201i)17-s + (−0.364 + 1.12i)18-s + (−0.283 − 0.872i)19-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.634+0.773i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.634+0.773i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.634+0.773i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(531,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.634+0.773i)
|
Particular Values
L(1) |
≈ |
0.127006−0.268505i |
L(21) |
≈ |
0.127006−0.268505i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(0.309+0.951i)T+(−1.61+1.17i)T2 |
| 3 | 1+(0.874−2.68i)T+(−2.42−1.76i)T2 |
| 5 | 1+5T2 |
| 7 | 1+(3.23−2.35i)T+(2.16−6.65i)T2 |
| 11 | 1+(−2.28+1.66i)T+(3.39−10.4i)T2 |
| 13 | 1+(0.437−1.34i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−1.14−0.831i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.23+3.80i)T+(−15.3+11.1i)T2 |
| 23 | 1+(4.57+3.32i)T+(7.10+21.8i)T2 |
| 29 | 1+(−0.437−1.34i)T+(−23.4+17.0i)T2 |
| 37 | 1−4.24T+37T2 |
| 41 | 1+(0.618+1.90i)T+(−33.1+24.0i)T2 |
| 43 | 1+(2.62+8.06i)T+(−34.7+25.2i)T2 |
| 47 | 1+(−3.70+11.4i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−3.43−2.49i)T+(16.3+50.4i)T2 |
| 59 | 1+(−2.47+7.60i)T+(−47.7−34.6i)T2 |
| 61 | 1+1.41T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+(6.47+4.70i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.43−2.49i)T+(22.5−69.4i)T2 |
| 79 | 1+(9.15+6.65i)T+(24.4+75.1i)T2 |
| 83 | 1+(−4.37−13.4i)T+(−67.1+48.7i)T2 |
| 89 | 1+(5.72−4.15i)T+(27.5−84.6i)T2 |
| 97 | 1+(6.47−4.70i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.912160220449787086122633418382, −9.217543311789550128446599770618, −8.695868073426479530663449270290, −6.81262061253140831896256908294, −6.07255889609660993157711140221, −5.47987596220005335123217619709, −4.10264067400641663459788834061, −3.38012084922844866881492975228, −2.31867655238823765203183921213, −0.15113960954661166720935292978,
1.46741319083444709556948620869, 2.80101347493079498441657035596, 4.00613070358330865625264534731, 5.94297925892233716733500501464, 6.12034666130550408409236376899, 7.04275041098555200846254583736, 7.55024240567844436568302233407, 8.127330590097757818572508212239, 9.455200924240857086833541392578, 10.22918260959923321436381468597