L(s) = 1 | + 2.82·3-s − 5-s + 2.82·7-s + 5.00·9-s − 5.65·11-s + 2·13-s − 2.82·15-s + 2·17-s + 8.00·21-s − 2.82·23-s + 25-s + 5.65·27-s − 6·29-s − 5.65·31-s − 16.0·33-s − 2.82·35-s + 10·37-s + 5.65·39-s + 2·41-s − 8.48·43-s − 5.00·45-s + 2.82·47-s + 1.00·49-s + 5.65·51-s − 6·53-s + 5.65·55-s + 11.3·59-s + ⋯ |
L(s) = 1 | + 1.63·3-s − 0.447·5-s + 1.06·7-s + 1.66·9-s − 1.70·11-s + 0.554·13-s − 0.730·15-s + 0.485·17-s + 1.74·21-s − 0.589·23-s + 0.200·25-s + 1.08·27-s − 1.11·29-s − 1.01·31-s − 2.78·33-s − 0.478·35-s + 1.64·37-s + 0.905·39-s + 0.312·41-s − 1.29·43-s − 0.745·45-s + 0.412·47-s + 0.142·49-s + 0.792·51-s − 0.824·53-s + 0.762·55-s + 1.47·59-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.092845398 |
L(21) |
≈ |
2.092845398 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
good | 3 | 1−2.82T+3T2 |
| 7 | 1−2.82T+7T2 |
| 11 | 1+5.65T+11T2 |
| 13 | 1−2T+13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+2.82T+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+5.65T+31T2 |
| 37 | 1−10T+37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+8.48T+43T2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−11.3T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+2.82T+67T2 |
| 71 | 1+5.65T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+11.3T+79T2 |
| 83 | 1−2.82T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53817667191451373632568628568, −10.63652798535804361642446776952, −9.626869907218388433642260600245, −8.519721980105615848195832680186, −7.943670102081038157537312274234, −7.42867144191638870823373674443, −5.51245569181223824742894392200, −4.27226961306955603738878899232, −3.12925247737475439352160521810, −1.95006760437674357452119030431,
1.95006760437674357452119030431, 3.12925247737475439352160521810, 4.27226961306955603738878899232, 5.51245569181223824742894392200, 7.42867144191638870823373674443, 7.943670102081038157537312274234, 8.519721980105615848195832680186, 9.626869907218388433642260600245, 10.63652798535804361642446776952, 11.53817667191451373632568628568