Properties

Label 2-320-1.1-c3-0-13
Degree $2$
Conductor $320$
Sign $-1$
Analytic cond. $18.8806$
Root an. cond. $4.34518$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s − 5·5-s + 4·7-s + 37·9-s + 12·11-s + 58·13-s + 40·15-s + 66·17-s − 100·19-s − 32·21-s − 132·23-s + 25·25-s − 80·27-s + 90·29-s − 152·31-s − 96·33-s − 20·35-s + 34·37-s − 464·39-s − 438·41-s + 32·43-s − 185·45-s + 204·47-s − 327·49-s − 528·51-s − 222·53-s − 60·55-s + ⋯
L(s)  = 1  − 1.53·3-s − 0.447·5-s + 0.215·7-s + 1.37·9-s + 0.328·11-s + 1.23·13-s + 0.688·15-s + 0.941·17-s − 1.20·19-s − 0.332·21-s − 1.19·23-s + 1/5·25-s − 0.570·27-s + 0.576·29-s − 0.880·31-s − 0.506·33-s − 0.0965·35-s + 0.151·37-s − 1.90·39-s − 1.66·41-s + 0.113·43-s − 0.612·45-s + 0.633·47-s − 0.953·49-s − 1.44·51-s − 0.575·53-s − 0.147·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-1$
Analytic conductor: \(18.8806\)
Root analytic conductor: \(4.34518\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 320,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
good3 \( 1 + 8 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 - 66 T + p^{3} T^{2} \)
19 \( 1 + 100 T + p^{3} T^{2} \)
23 \( 1 + 132 T + p^{3} T^{2} \)
29 \( 1 - 90 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 - 34 T + p^{3} T^{2} \)
41 \( 1 + 438 T + p^{3} T^{2} \)
43 \( 1 - 32 T + p^{3} T^{2} \)
47 \( 1 - 204 T + p^{3} T^{2} \)
53 \( 1 + 222 T + p^{3} T^{2} \)
59 \( 1 - 420 T + p^{3} T^{2} \)
61 \( 1 + 902 T + p^{3} T^{2} \)
67 \( 1 + 1024 T + p^{3} T^{2} \)
71 \( 1 + 432 T + p^{3} T^{2} \)
73 \( 1 - 362 T + p^{3} T^{2} \)
79 \( 1 - 160 T + p^{3} T^{2} \)
83 \( 1 - 72 T + p^{3} T^{2} \)
89 \( 1 - 810 T + p^{3} T^{2} \)
97 \( 1 - 1106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81973378223859344787114230451, −10.23761177653787897948257998029, −8.797984037868545978872730520829, −7.77035004080839675677941001595, −6.50091674456001770610585470102, −5.90618430189883161690154628463, −4.74858137452270198044189754233, −3.68736784694363347570436425678, −1.43021952791533749067371864952, 0, 1.43021952791533749067371864952, 3.68736784694363347570436425678, 4.74858137452270198044189754233, 5.90618430189883161690154628463, 6.50091674456001770610585470102, 7.77035004080839675677941001595, 8.797984037868545978872730520829, 10.23761177653787897948257998029, 10.81973378223859344787114230451

Graph of the $Z$-function along the critical line