Properties

Label 2-320-1.1-c5-0-21
Degree $2$
Conductor $320$
Sign $1$
Analytic cond. $51.3228$
Root an. cond. $7.16399$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·3-s + 25·5-s + 242·7-s + 81·9-s − 656·11-s + 206·13-s + 450·15-s + 1.69e3·17-s + 1.36e3·19-s + 4.35e3·21-s + 2.19e3·23-s + 625·25-s − 2.91e3·27-s + 2.21e3·29-s − 1.70e3·31-s − 1.18e4·33-s + 6.05e3·35-s + 846·37-s + 3.70e3·39-s − 1.81e3·41-s − 1.05e4·43-s + 2.02e3·45-s + 1.20e4·47-s + 4.17e4·49-s + 3.04e4·51-s − 3.25e4·53-s − 1.64e4·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1.86·7-s + 1/3·9-s − 1.63·11-s + 0.338·13-s + 0.516·15-s + 1.41·17-s + 0.866·19-s + 2.15·21-s + 0.866·23-s + 1/5·25-s − 0.769·27-s + 0.489·29-s − 0.317·31-s − 1.88·33-s + 0.834·35-s + 0.101·37-s + 0.390·39-s − 0.168·41-s − 0.868·43-s + 0.149·45-s + 0.797·47-s + 2.48·49-s + 1.63·51-s − 1.59·53-s − 0.731·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.3228\)
Root analytic conductor: \(7.16399\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.254417050\)
\(L(\frac12)\) \(\approx\) \(4.254417050\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p^{2} T \)
good3 \( 1 - 2 p^{2} T + p^{5} T^{2} \)
7 \( 1 - 242 T + p^{5} T^{2} \)
11 \( 1 + 656 T + p^{5} T^{2} \)
13 \( 1 - 206 T + p^{5} T^{2} \)
17 \( 1 - 1690 T + p^{5} T^{2} \)
19 \( 1 - 1364 T + p^{5} T^{2} \)
23 \( 1 - 2198 T + p^{5} T^{2} \)
29 \( 1 - 2218 T + p^{5} T^{2} \)
31 \( 1 + 1700 T + p^{5} T^{2} \)
37 \( 1 - 846 T + p^{5} T^{2} \)
41 \( 1 + 1818 T + p^{5} T^{2} \)
43 \( 1 + 10534 T + p^{5} T^{2} \)
47 \( 1 - 12074 T + p^{5} T^{2} \)
53 \( 1 + 32586 T + p^{5} T^{2} \)
59 \( 1 + 8668 T + p^{5} T^{2} \)
61 \( 1 - 34670 T + p^{5} T^{2} \)
67 \( 1 - 47566 T + p^{5} T^{2} \)
71 \( 1 - 948 T + p^{5} T^{2} \)
73 \( 1 + 63102 T + p^{5} T^{2} \)
79 \( 1 - 46536 T + p^{5} T^{2} \)
83 \( 1 - 88778 T + p^{5} T^{2} \)
89 \( 1 + 104934 T + p^{5} T^{2} \)
97 \( 1 + 36254 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73961229098923815250942942827, −9.817860805182915459001517915963, −8.671870254695737220960948895428, −7.994226328434341816491560854666, −7.47753649433391359699133553056, −5.53183030072664567540848601680, −4.92689238640077636321922521207, −3.30561729592740628816169489817, −2.31379691433122749455578954394, −1.20918872506854538701467737797, 1.20918872506854538701467737797, 2.31379691433122749455578954394, 3.30561729592740628816169489817, 4.92689238640077636321922521207, 5.53183030072664567540848601680, 7.47753649433391359699133553056, 7.994226328434341816491560854666, 8.671870254695737220960948895428, 9.817860805182915459001517915963, 10.73961229098923815250942942827

Graph of the $Z$-function along the critical line