L(s) = 1 | + (−1.82 + 1.82i)3-s + (−0.707 − 0.707i)5-s − 4.50i·7-s − 3.68i·9-s + (1.64 + 1.64i)11-s + (1.51 − 1.51i)13-s + 2.58·15-s + 1.45·17-s + (2.67 − 2.67i)19-s + (8.24 + 8.24i)21-s − 2.37i·23-s + 1.00i·25-s + (1.24 + 1.24i)27-s + (0.924 − 0.924i)29-s + 7.20·31-s + ⋯ |
L(s) = 1 | + (−1.05 + 1.05i)3-s + (−0.316 − 0.316i)5-s − 1.70i·7-s − 1.22i·9-s + (0.494 + 0.494i)11-s + (0.421 − 0.421i)13-s + 0.667·15-s + 0.353·17-s + (0.614 − 0.614i)19-s + (1.79 + 1.79i)21-s − 0.495i·23-s + 0.200i·25-s + (0.239 + 0.239i)27-s + (0.171 − 0.171i)29-s + 1.29·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 + 0.596i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 + 0.596i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.782562 - 0.258700i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.782562 - 0.258700i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (1.82 - 1.82i)T - 3iT^{2} \) |
| 7 | \( 1 + 4.50iT - 7T^{2} \) |
| 11 | \( 1 + (-1.64 - 1.64i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.51 + 1.51i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.45T + 17T^{2} \) |
| 19 | \( 1 + (-2.67 + 2.67i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.37iT - 23T^{2} \) |
| 29 | \( 1 + (-0.924 + 0.924i)T - 29iT^{2} \) |
| 31 | \( 1 - 7.20T + 31T^{2} \) |
| 37 | \( 1 + (5.21 + 5.21i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.41iT - 41T^{2} \) |
| 43 | \( 1 + (7.65 + 7.65i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.51T + 47T^{2} \) |
| 53 | \( 1 + (-1.50 - 1.50i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.31 - 5.31i)T + 59iT^{2} \) |
| 61 | \( 1 + (1.02 - 1.02i)T - 61iT^{2} \) |
| 67 | \( 1 + (5.22 - 5.22i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.92iT - 71T^{2} \) |
| 73 | \( 1 + 1.39iT - 73T^{2} \) |
| 79 | \( 1 + 5.06T + 79T^{2} \) |
| 83 | \( 1 + (-2.44 + 2.44i)T - 83iT^{2} \) |
| 89 | \( 1 - 9.36iT - 89T^{2} \) |
| 97 | \( 1 - 18.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42450216439130688724268164666, −10.37259312778410134648946872006, −10.20965755795330654867934254382, −8.913509433496339327336597777378, −7.55647576418831794117671529252, −6.64881078138693082832598768608, −5.32552306363575352672770828373, −4.40065229662738916320831859637, −3.68491556955770368355681040122, −0.74909416895864156142606767649,
1.53357315512767833986895715953, 3.15258777974236311583714727115, 5.08458029858295570157388670468, 6.05942768389190035610061317668, 6.56218749407795175855501776041, 7.86662047887083094400384534470, 8.737088699249460166958497436345, 9.930050969885592271306410018917, 11.39655398438151749218490339524, 11.71172315517903076713156378396