L(s) = 1 | + (−1.82 + 1.82i)3-s + (−0.707 − 0.707i)5-s − 4.50i·7-s − 3.68i·9-s + (1.64 + 1.64i)11-s + (1.51 − 1.51i)13-s + 2.58·15-s + 1.45·17-s + (2.67 − 2.67i)19-s + (8.24 + 8.24i)21-s − 2.37i·23-s + 1.00i·25-s + (1.24 + 1.24i)27-s + (0.924 − 0.924i)29-s + 7.20·31-s + ⋯ |
L(s) = 1 | + (−1.05 + 1.05i)3-s + (−0.316 − 0.316i)5-s − 1.70i·7-s − 1.22i·9-s + (0.494 + 0.494i)11-s + (0.421 − 0.421i)13-s + 0.667·15-s + 0.353·17-s + (0.614 − 0.614i)19-s + (1.79 + 1.79i)21-s − 0.495i·23-s + 0.200i·25-s + (0.239 + 0.239i)27-s + (0.171 − 0.171i)29-s + 1.29·31-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.802+0.596i)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)(0.802+0.596i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.802+0.596i
|
Analytic conductor: |
2.55521 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :1/2), 0.802+0.596i)
|
Particular Values
L(1) |
≈ |
0.782562−0.258700i |
L(21) |
≈ |
0.782562−0.258700i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.707+0.707i)T |
good | 3 | 1+(1.82−1.82i)T−3iT2 |
| 7 | 1+4.50iT−7T2 |
| 11 | 1+(−1.64−1.64i)T+11iT2 |
| 13 | 1+(−1.51+1.51i)T−13iT2 |
| 17 | 1−1.45T+17T2 |
| 19 | 1+(−2.67+2.67i)T−19iT2 |
| 23 | 1+2.37iT−23T2 |
| 29 | 1+(−0.924+0.924i)T−29iT2 |
| 31 | 1−7.20T+31T2 |
| 37 | 1+(5.21+5.21i)T+37iT2 |
| 41 | 1+6.41iT−41T2 |
| 43 | 1+(7.65+7.65i)T+43iT2 |
| 47 | 1−2.51T+47T2 |
| 53 | 1+(−1.50−1.50i)T+53iT2 |
| 59 | 1+(−5.31−5.31i)T+59iT2 |
| 61 | 1+(1.02−1.02i)T−61iT2 |
| 67 | 1+(5.22−5.22i)T−67iT2 |
| 71 | 1−1.92iT−71T2 |
| 73 | 1+1.39iT−73T2 |
| 79 | 1+5.06T+79T2 |
| 83 | 1+(−2.44+2.44i)T−83iT2 |
| 89 | 1−9.36iT−89T2 |
| 97 | 1−18.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42450216439130688724268164666, −10.37259312778410134648946872006, −10.20965755795330654867934254382, −8.913509433496339327336597777378, −7.55647576418831794117671529252, −6.64881078138693082832598768608, −5.32552306363575352672770828373, −4.40065229662738916320831859637, −3.68491556955770368355681040122, −0.74909416895864156142606767649,
1.53357315512767833986895715953, 3.15258777974236311583714727115, 5.08458029858295570157388670468, 6.05942768389190035610061317668, 6.56218749407795175855501776041, 7.86662047887083094400384534470, 8.737088699249460166958497436345, 9.930050969885592271306410018917, 11.39655398438151749218490339524, 11.71172315517903076713156378396