L(s) = 1 | + (−2 + i)5-s + 3i·9-s + (5 + 5i)13-s + (−5 + 5i)17-s + (3 − 4i)25-s − 4i·29-s + (−5 + 5i)37-s + 8·41-s + (−3 − 6i)45-s − 7i·49-s + (−5 − 5i)53-s + 12·61-s + (−15 − 5i)65-s + (5 + 5i)73-s − 9·81-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.447i)5-s + i·9-s + (1.38 + 1.38i)13-s + (−1.21 + 1.21i)17-s + (0.600 − 0.800i)25-s − 0.742i·29-s + (−0.821 + 0.821i)37-s + 1.24·41-s + (−0.447 − 0.894i)45-s − i·49-s + (−0.686 − 0.686i)53-s + 1.53·61-s + (−1.86 − 0.620i)65-s + (0.585 + 0.585i)73-s − 81-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.0898−0.995i)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)(0.0898−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.0898−0.995i
|
Analytic conductor: |
2.55521 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :1/2), 0.0898−0.995i)
|
Particular Values
L(1) |
≈ |
0.748467+0.684014i |
L(21) |
≈ |
0.748467+0.684014i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2−i)T |
good | 3 | 1−3iT2 |
| 7 | 1+7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(−5−5i)T+13iT2 |
| 17 | 1+(5−5i)T−17iT2 |
| 19 | 1+19T2 |
| 23 | 1−23iT2 |
| 29 | 1+4iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(5−5i)T−37iT2 |
| 41 | 1−8T+41T2 |
| 43 | 1−43iT2 |
| 47 | 1+47iT2 |
| 53 | 1+(5+5i)T+53iT2 |
| 59 | 1+59T2 |
| 61 | 1−12T+61T2 |
| 67 | 1+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−5−5i)T+73iT2 |
| 79 | 1+79T2 |
| 83 | 1−83iT2 |
| 89 | 1+16iT−89T2 |
| 97 | 1+(−5+5i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.45823637494045206387330414327, −11.17739061108679690381095781286, −10.21521912329344702226891179652, −8.753983348100711241549479155291, −8.203325745555624988059499181647, −7.00036321406455903231163002005, −6.17080292838263670808391925213, −4.55279357045582279894781279974, −3.73628229388653838275156087841, −2.02547983030528401194618204137,
0.76085770125354409810161120625, 3.12558842572288379734781975579, 4.12396539936214544141183389183, 5.40503843578542021326014796610, 6.59336922864393581770584593663, 7.65282297564612043595752202219, 8.674534544629272867030782860446, 9.290739722645913941443564781581, 10.75088767626022843866068533848, 11.34802083647064143476429057640