L(s) = 1 | + (2 + 2i)3-s + (2 − i)5-s + (−2 + 2i)7-s + 5i·9-s + (1 − i)13-s + (6 + 2i)15-s + (−5 − 5i)17-s + 4·19-s − 8·21-s + (−2 − 2i)23-s + (3 − 4i)25-s + (−4 + 4i)27-s + 4i·29-s + 4i·31-s + (−2 + 6i)35-s + ⋯ |
L(s) = 1 | + (1.15 + 1.15i)3-s + (0.894 − 0.447i)5-s + (−0.755 + 0.755i)7-s + 1.66i·9-s + (0.277 − 0.277i)13-s + (1.54 + 0.516i)15-s + (−1.21 − 1.21i)17-s + 0.917·19-s − 1.74·21-s + (−0.417 − 0.417i)23-s + (0.600 − 0.800i)25-s + (−0.769 + 0.769i)27-s + 0.742i·29-s + 0.718i·31-s + (−0.338 + 1.01i)35-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.525−0.850i)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
2.55521 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :1/2), 0.525−0.850i)
|
Particular Values
L(1) |
≈ |
1.70817+0.952368i |
L(21) |
≈ |
1.70817+0.952368i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2+i)T |
good | 3 | 1+(−2−2i)T+3iT2 |
| 7 | 1+(2−2i)T−7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(−1+i)T−13iT2 |
| 17 | 1+(5+5i)T+17iT2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(2+2i)T+23iT2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(1+i)T+37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(6+6i)T+43iT2 |
| 47 | 1+(−2+2i)T−47iT2 |
| 53 | 1+(−7+7i)T−53iT2 |
| 59 | 1−4T+59T2 |
| 61 | 1−4T+61T2 |
| 67 | 1+(10−10i)T−67iT2 |
| 71 | 1+12iT−71T2 |
| 73 | 1+(3−3i)T−73iT2 |
| 79 | 1+16T+79T2 |
| 83 | 1+(2+2i)T+83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(3+3i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.76879059408955910240786623277, −10.40154355201536333201077454439, −9.779715327005286913427318400166, −8.933495585803860623297955552005, −8.648911364248645495779822676460, −6.97603214422178413439368945778, −5.61286764504178668945953674496, −4.69476694812651960367409068810, −3.28845776483147009444881669870, −2.36412307366741810259947605973,
1.59133414528139497970127095113, 2.75590623724216032251336061566, 3.91646776746271486704453338781, 6.02200135929139039453656588515, 6.74232386529797678794549029764, 7.55229769301900557870915055929, 8.623402503323118758598025292129, 9.524014131081033781687273619419, 10.34640463301166789617916303982, 11.57315681538910339168721901959