L(s) = 1 | − i·5-s − i·9-s + (1 + i)13-s + (−1 + i)17-s − 25-s + (−1 + i)37-s − 45-s + i·49-s + (−1 − i)53-s + (1 − i)65-s + (1 + i)73-s − 81-s + (1 + i)85-s + (1 − i)97-s + 2·101-s + ⋯ |
L(s) = 1 | − i·5-s − i·9-s + (1 + i)13-s + (−1 + i)17-s − 25-s + (−1 + i)37-s − 45-s + i·49-s + (−1 − i)53-s + (1 − i)65-s + (1 + i)73-s − 81-s + (1 + i)85-s + (1 − i)97-s + 2·101-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.850+0.525i)Λ(1−s)
Λ(s)=(=(320s/2ΓC(s)L(s)(0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.850+0.525i
|
Analytic conductor: |
0.159700 |
Root analytic conductor: |
0.399625 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :0), 0.850+0.525i)
|
Particular Values
L(21) |
≈ |
0.7909838631 |
L(21) |
≈ |
0.7909838631 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+iT |
good | 3 | 1+iT2 |
| 7 | 1−iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1−i)T+iT2 |
| 17 | 1+(1−i)T−iT2 |
| 19 | 1−T2 |
| 23 | 1+iT2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+(1−i)T−iT2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1−iT2 |
| 53 | 1+(1+i)T+iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1+iT2 |
| 89 | 1−T2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.83342670478939600778000367090, −10.99823526752159599260567792653, −9.718829672758755078742899264270, −8.887964672811984972068635532586, −8.315241678892954349982762143012, −6.76267191062233945982580644459, −5.98658972706148741961646032438, −4.58466241709766521529310591437, −3.67342203931195572136873608633, −1.59942077213077209988873457183,
2.31263235827859086969458246725, 3.52007095924675564889294389541, 4.99971014154535995678329749748, 6.12915681482321798350687279061, 7.18830048997100790055883055519, 8.032732310269770728252854160536, 9.137370007529070708115527314309, 10.42385273045418601749797180161, 10.85084804999473395270961997714, 11.70730757930274210052070860578