L(s) = 1 | − 2i·3-s + (5 − 10i)5-s − 26i·7-s + 23·9-s + 28·11-s − 12i·13-s + (−20 − 10i)15-s + 64i·17-s − 60·19-s − 52·21-s − 58i·23-s + (−75 − 100i)25-s − 100i·27-s + 90·29-s − 128·31-s + ⋯ |
L(s) = 1 | − 0.384i·3-s + (0.447 − 0.894i)5-s − 1.40i·7-s + 0.851·9-s + 0.767·11-s − 0.256i·13-s + (−0.344 − 0.172i)15-s + 0.913i·17-s − 0.724·19-s − 0.540·21-s − 0.525i·23-s + (−0.599 − 0.800i)25-s − 0.712i·27-s + 0.576·29-s − 0.741·31-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(320s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
18.8806 |
Root analytic conductor: |
4.34518 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
2.037591275 |
L(21) |
≈ |
2.037591275 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−5+10i)T |
good | 3 | 1+2iT−27T2 |
| 7 | 1+26iT−343T2 |
| 11 | 1−28T+1.33e3T2 |
| 13 | 1+12iT−2.19e3T2 |
| 17 | 1−64iT−4.91e3T2 |
| 19 | 1+60T+6.85e3T2 |
| 23 | 1+58iT−1.21e4T2 |
| 29 | 1−90T+2.43e4T2 |
| 31 | 1+128T+2.97e4T2 |
| 37 | 1−236iT−5.06e4T2 |
| 41 | 1−242T+6.89e4T2 |
| 43 | 1+362iT−7.95e4T2 |
| 47 | 1+226iT−1.03e5T2 |
| 53 | 1−108iT−1.48e5T2 |
| 59 | 1+20T+2.05e5T2 |
| 61 | 1+542T+2.26e5T2 |
| 67 | 1+434iT−3.00e5T2 |
| 71 | 1+1.12e3T+3.57e5T2 |
| 73 | 1−632iT−3.89e5T2 |
| 79 | 1−720T+4.93e5T2 |
| 83 | 1−478iT−5.71e5T2 |
| 89 | 1−490T+7.04e5T2 |
| 97 | 1+1.45e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65293564668183674781522240351, −10.11556071257465796326139075582, −8.995261770823402169029000634345, −8.010867569235655360101214641531, −7.00129800582575677014624815039, −6.13574437147212438980891751340, −4.61104182251339335596954819002, −3.89482963891029657179100245135, −1.75232921695408700796812412207, −0.77660257682822605928917914978,
1.84391091884897757701568395479, 3.02336676388724617027351559708, 4.39864792936923166987060598602, 5.68297296987992963923648045740, 6.55304683624049432613562631405, 7.56716214727069016926041410952, 9.119870743668240181451128152218, 9.436179251195188422269726643836, 10.57414412333405307026209586741, 11.44882135083684824148929030341