Properties

Label 2-320892-1.1-c1-0-13
Degree $2$
Conductor $320892$
Sign $-1$
Analytic cond. $2562.33$
Root an. cond. $50.6195$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 13-s − 2·15-s − 17-s + 2·19-s − 25-s + 27-s − 2·29-s + 8·31-s + 4·37-s + 39-s − 10·41-s − 2·45-s − 7·49-s − 51-s + 6·53-s + 2·57-s − 14·61-s − 2·65-s − 6·67-s + 6·71-s − 4·73-s − 75-s + 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.277·13-s − 0.516·15-s − 0.242·17-s + 0.458·19-s − 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.657·37-s + 0.160·39-s − 1.56·41-s − 0.298·45-s − 49-s − 0.140·51-s + 0.824·53-s + 0.264·57-s − 1.79·61-s − 0.248·65-s − 0.733·67-s + 0.712·71-s − 0.468·73-s − 0.115·75-s + 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320892\)    =    \(2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2562.33\)
Root analytic conductor: \(50.6195\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 320892,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88440717315032, −12.32031663970101, −11.89649074813707, −11.60668360373167, −11.05409497980581, −10.64000386329240, −9.971138651902090, −9.732863222110321, −9.142170849995676, −8.554931198149262, −8.331383346987121, −7.713146670441039, −7.526888342107864, −6.806850020798795, −6.459856562899966, −5.844369741526736, −5.233654591682197, −4.636688415225073, −4.237833877879181, −3.757665586887557, −3.093734599666578, −2.896965627817661, −2.009578493822262, −1.492050337943157, −0.7449930965738251, 0, 0.7449930965738251, 1.492050337943157, 2.009578493822262, 2.896965627817661, 3.093734599666578, 3.757665586887557, 4.237833877879181, 4.636688415225073, 5.233654591682197, 5.844369741526736, 6.459856562899966, 6.806850020798795, 7.526888342107864, 7.713146670441039, 8.331383346987121, 8.554931198149262, 9.142170849995676, 9.732863222110321, 9.971138651902090, 10.64000386329240, 11.05409497980581, 11.60668360373167, 11.89649074813707, 12.32031663970101, 12.88440717315032

Graph of the $Z$-function along the critical line