Properties

Label 2-320892-1.1-c1-0-7
Degree $2$
Conductor $320892$
Sign $1$
Analytic cond. $2562.33$
Root an. cond. $50.6195$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 4·7-s + 9-s + 13-s − 2·15-s − 17-s − 2·19-s − 4·21-s − 8·23-s − 25-s − 27-s − 2·29-s + 4·31-s + 8·35-s + 8·37-s − 39-s + 10·41-s + 2·45-s − 8·47-s + 9·49-s + 51-s − 2·53-s + 2·57-s − 6·61-s + 4·63-s + 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.277·13-s − 0.516·15-s − 0.242·17-s − 0.458·19-s − 0.872·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.718·31-s + 1.35·35-s + 1.31·37-s − 0.160·39-s + 1.56·41-s + 0.298·45-s − 1.16·47-s + 9/7·49-s + 0.140·51-s − 0.274·53-s + 0.264·57-s − 0.768·61-s + 0.503·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320892\)    =    \(2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(2562.33\)
Root analytic conductor: \(50.6195\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 320892,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.272869106\)
\(L(\frac12)\) \(\approx\) \(3.272869106\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42567500405820, −12.20916278058390, −11.66636121973856, −11.16464377841798, −10.89112882809236, −10.49111553334423, −9.874151839579496, −9.445418602038917, −9.146500656091921, −8.257852618813157, −7.933647444872601, −7.834734486897635, −6.930549367335189, −6.394213047228979, −5.990681962399778, −5.688618404479301, −5.040368685538649, −4.599704487899022, −4.196761749936330, −3.647713759106965, −2.704088108385258, −2.076814269665488, −1.861657159233084, −1.172973284902923, −0.5069787985010591, 0.5069787985010591, 1.172973284902923, 1.861657159233084, 2.076814269665488, 2.704088108385258, 3.647713759106965, 4.196761749936330, 4.599704487899022, 5.040368685538649, 5.688618404479301, 5.990681962399778, 6.394213047228979, 6.930549367335189, 7.834734486897635, 7.933647444872601, 8.257852618813157, 9.146500656091921, 9.445418602038917, 9.874151839579496, 10.49111553334423, 10.89112882809236, 11.16464377841798, 11.66636121973856, 12.20916278058390, 12.42567500405820

Graph of the $Z$-function along the critical line