Properties

Label 2-3234-1.1-c1-0-14
Degree $2$
Conductor $3234$
Sign $1$
Analytic cond. $25.8236$
Root an. cond. $5.08169$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 11-s − 12-s + 1.41·13-s + 16-s + 4·17-s − 18-s + 5.41·19-s − 22-s + 7.65·23-s + 24-s − 5·25-s − 1.41·26-s − 27-s − 5.65·29-s − 3.07·31-s − 32-s − 33-s − 4·34-s + 36-s + 3.65·37-s − 5.41·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 0.353·8-s + 0.333·9-s + 0.301·11-s − 0.288·12-s + 0.392·13-s + 0.250·16-s + 0.970·17-s − 0.235·18-s + 1.24·19-s − 0.213·22-s + 1.59·23-s + 0.204·24-s − 25-s − 0.277·26-s − 0.192·27-s − 1.05·29-s − 0.551·31-s − 0.176·32-s − 0.174·33-s − 0.685·34-s + 0.166·36-s + 0.601·37-s − 0.878·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3234\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.8236\)
Root analytic conductor: \(5.08169\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3234,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.174241190\)
\(L(\frac12)\) \(\approx\) \(1.174241190\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 5T^{2} \)
13 \( 1 - 1.41T + 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 5.41T + 19T^{2} \)
23 \( 1 - 7.65T + 23T^{2} \)
29 \( 1 + 5.65T + 29T^{2} \)
31 \( 1 + 3.07T + 31T^{2} \)
37 \( 1 - 3.65T + 37T^{2} \)
41 \( 1 - 9.65T + 41T^{2} \)
43 \( 1 + 10T + 43T^{2} \)
47 \( 1 + 1.41T + 47T^{2} \)
53 \( 1 + 3.65T + 53T^{2} \)
59 \( 1 - 6.82T + 59T^{2} \)
61 \( 1 + 1.41T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 - 1.65T + 79T^{2} \)
83 \( 1 + 15.0T + 83T^{2} \)
89 \( 1 - 2.58T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.766960427947677118543865671761, −7.72148591126973706192010012839, −7.37667243631191563309784703290, −6.44899630446655505574090735130, −5.68576150066804518200048010910, −5.06334681038250510709292966591, −3.82779244373936436383246083855, −3.04439911837506710661099257336, −1.68477810551715713715733220735, −0.78709164801638357644427046107, 0.78709164801638357644427046107, 1.68477810551715713715733220735, 3.04439911837506710661099257336, 3.82779244373936436383246083855, 5.06334681038250510709292966591, 5.68576150066804518200048010910, 6.44899630446655505574090735130, 7.37667243631191563309784703290, 7.72148591126973706192010012839, 8.766960427947677118543865671761

Graph of the $Z$-function along the critical line