Properties

Label 2-3240-1.1-c1-0-14
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 0.867·7-s − 4.08·11-s + 1.21·13-s + 7.82·17-s − 4.51·19-s + 2.86·23-s + 25-s + 6.29·29-s − 2.52·31-s + 0.867·35-s − 0.523·37-s − 8.12·41-s + 3.82·43-s − 1.39·47-s − 6.24·49-s + 13.9·53-s − 4.08·55-s + 6.87·59-s + 9.08·61-s + 1.21·65-s + 3.37·67-s + 3.21·71-s + 8.60·73-s − 3.54·77-s + 16.2·79-s + 6.44·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.327·7-s − 1.23·11-s + 0.336·13-s + 1.89·17-s − 1.03·19-s + 0.597·23-s + 0.200·25-s + 1.16·29-s − 0.453·31-s + 0.146·35-s − 0.0859·37-s − 1.26·41-s + 0.582·43-s − 0.202·47-s − 0.892·49-s + 1.91·53-s − 0.551·55-s + 0.894·59-s + 1.16·61-s + 0.150·65-s + 0.412·67-s + 0.381·71-s + 1.00·73-s − 0.404·77-s + 1.82·79-s + 0.707·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.077784679\)
\(L(\frac12)\) \(\approx\) \(2.077784679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 0.867T + 7T^{2} \)
11 \( 1 + 4.08T + 11T^{2} \)
13 \( 1 - 1.21T + 13T^{2} \)
17 \( 1 - 7.82T + 17T^{2} \)
19 \( 1 + 4.51T + 19T^{2} \)
23 \( 1 - 2.86T + 23T^{2} \)
29 \( 1 - 6.29T + 29T^{2} \)
31 \( 1 + 2.52T + 31T^{2} \)
37 \( 1 + 0.523T + 37T^{2} \)
41 \( 1 + 8.12T + 41T^{2} \)
43 \( 1 - 3.82T + 43T^{2} \)
47 \( 1 + 1.39T + 47T^{2} \)
53 \( 1 - 13.9T + 53T^{2} \)
59 \( 1 - 6.87T + 59T^{2} \)
61 \( 1 - 9.08T + 61T^{2} \)
67 \( 1 - 3.37T + 67T^{2} \)
71 \( 1 - 3.21T + 71T^{2} \)
73 \( 1 - 8.60T + 73T^{2} \)
79 \( 1 - 16.2T + 79T^{2} \)
83 \( 1 - 6.44T + 83T^{2} \)
89 \( 1 + 10.2T + 89T^{2} \)
97 \( 1 + 8.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.385131721213605647722104278738, −8.136714968489790950006321366925, −7.16760604124014672362937337858, −6.40043546381305178489131900913, −5.37694125650044841133974329615, −5.14170540836934730154882498559, −3.90508909815520774141186752130, −2.98207464108058208539122620428, −2.08731817679573155969198663590, −0.882826897293640083917944520406, 0.882826897293640083917944520406, 2.08731817679573155969198663590, 2.98207464108058208539122620428, 3.90508909815520774141186752130, 5.14170540836934730154882498559, 5.37694125650044841133974329615, 6.40043546381305178489131900913, 7.16760604124014672362937337858, 8.136714968489790950006321366925, 8.385131721213605647722104278738

Graph of the $Z$-function along the critical line