L(s) = 1 | + 5-s + 0.867·7-s − 4.08·11-s + 1.21·13-s + 7.82·17-s − 4.51·19-s + 2.86·23-s + 25-s + 6.29·29-s − 2.52·31-s + 0.867·35-s − 0.523·37-s − 8.12·41-s + 3.82·43-s − 1.39·47-s − 6.24·49-s + 13.9·53-s − 4.08·55-s + 6.87·59-s + 9.08·61-s + 1.21·65-s + 3.37·67-s + 3.21·71-s + 8.60·73-s − 3.54·77-s + 16.2·79-s + 6.44·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.327·7-s − 1.23·11-s + 0.336·13-s + 1.89·17-s − 1.03·19-s + 0.597·23-s + 0.200·25-s + 1.16·29-s − 0.453·31-s + 0.146·35-s − 0.0859·37-s − 1.26·41-s + 0.582·43-s − 0.202·47-s − 0.892·49-s + 1.91·53-s − 0.551·55-s + 0.894·59-s + 1.16·61-s + 0.150·65-s + 0.412·67-s + 0.381·71-s + 1.00·73-s − 0.404·77-s + 1.82·79-s + 0.707·83-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.077784679 |
L(21) |
≈ |
2.077784679 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1−0.867T+7T2 |
| 11 | 1+4.08T+11T2 |
| 13 | 1−1.21T+13T2 |
| 17 | 1−7.82T+17T2 |
| 19 | 1+4.51T+19T2 |
| 23 | 1−2.86T+23T2 |
| 29 | 1−6.29T+29T2 |
| 31 | 1+2.52T+31T2 |
| 37 | 1+0.523T+37T2 |
| 41 | 1+8.12T+41T2 |
| 43 | 1−3.82T+43T2 |
| 47 | 1+1.39T+47T2 |
| 53 | 1−13.9T+53T2 |
| 59 | 1−6.87T+59T2 |
| 61 | 1−9.08T+61T2 |
| 67 | 1−3.37T+67T2 |
| 71 | 1−3.21T+71T2 |
| 73 | 1−8.60T+73T2 |
| 79 | 1−16.2T+79T2 |
| 83 | 1−6.44T+83T2 |
| 89 | 1+10.2T+89T2 |
| 97 | 1+8.77T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.385131721213605647722104278738, −8.136714968489790950006321366925, −7.16760604124014672362937337858, −6.40043546381305178489131900913, −5.37694125650044841133974329615, −5.14170540836934730154882498559, −3.90508909815520774141186752130, −2.98207464108058208539122620428, −2.08731817679573155969198663590, −0.882826897293640083917944520406,
0.882826897293640083917944520406, 2.08731817679573155969198663590, 2.98207464108058208539122620428, 3.90508909815520774141186752130, 5.14170540836934730154882498559, 5.37694125650044841133974329615, 6.40043546381305178489131900913, 7.16760604124014672362937337858, 8.136714968489790950006321366925, 8.385131721213605647722104278738