Properties

Label 2-3240-1.1-c1-0-38
Degree $2$
Conductor $3240$
Sign $-1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 3·11-s + 2·17-s + 19-s + 2·23-s + 25-s − 3·29-s − 3·31-s − 2·35-s + 5·41-s − 4·43-s − 8·47-s − 3·49-s + 2·53-s − 3·55-s + 3·59-s + 6·61-s − 10·67-s − 15·71-s − 14·73-s + 6·77-s − 8·79-s + 2·85-s + 89-s + 95-s − 16·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.904·11-s + 0.485·17-s + 0.229·19-s + 0.417·23-s + 1/5·25-s − 0.557·29-s − 0.538·31-s − 0.338·35-s + 0.780·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s + 0.274·53-s − 0.404·55-s + 0.390·59-s + 0.768·61-s − 1.22·67-s − 1.78·71-s − 1.63·73-s + 0.683·77-s − 0.900·79-s + 0.216·85-s + 0.105·89-s + 0.102·95-s − 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.296182208447983126213987155467, −7.46931054670746793463002543690, −6.83407958246025426756264582364, −5.88753911467151255632721223678, −5.40064086492557480332722582663, −4.43154984924062291000787946753, −3.32721269409746942774135228772, −2.69549738228437653861646620092, −1.50342828949796868296464122084, 0, 1.50342828949796868296464122084, 2.69549738228437653861646620092, 3.32721269409746942774135228772, 4.43154984924062291000787946753, 5.40064086492557480332722582663, 5.88753911467151255632721223678, 6.83407958246025426756264582364, 7.46931054670746793463002543690, 8.296182208447983126213987155467

Graph of the $Z$-function along the critical line