L(s) = 1 | + 5-s − 2·7-s − 3·11-s + 2·17-s + 19-s + 2·23-s + 25-s − 3·29-s − 3·31-s − 2·35-s + 5·41-s − 4·43-s − 8·47-s − 3·49-s + 2·53-s − 3·55-s + 3·59-s + 6·61-s − 10·67-s − 15·71-s − 14·73-s + 6·77-s − 8·79-s + 2·85-s + 89-s + 95-s − 16·97-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s − 0.904·11-s + 0.485·17-s + 0.229·19-s + 0.417·23-s + 1/5·25-s − 0.557·29-s − 0.538·31-s − 0.338·35-s + 0.780·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s + 0.274·53-s − 0.404·55-s + 0.390·59-s + 0.768·61-s − 1.22·67-s − 1.78·71-s − 1.63·73-s + 0.683·77-s − 0.900·79-s + 0.216·85-s + 0.105·89-s + 0.102·95-s − 1.62·97-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+3T+pT2 |
| 37 | 1+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1+15T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−T+pT2 |
| 97 | 1+16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.296182208447983126213987155467, −7.46931054670746793463002543690, −6.83407958246025426756264582364, −5.88753911467151255632721223678, −5.40064086492557480332722582663, −4.43154984924062291000787946753, −3.32721269409746942774135228772, −2.69549738228437653861646620092, −1.50342828949796868296464122084, 0,
1.50342828949796868296464122084, 2.69549738228437653861646620092, 3.32721269409746942774135228772, 4.43154984924062291000787946753, 5.40064086492557480332722582663, 5.88753911467151255632721223678, 6.83407958246025426756264582364, 7.46931054670746793463002543690, 8.296182208447983126213987155467