L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (0.5 + 0.133i)7-s + (−0.707 + 0.707i)8-s + (−0.500 − 0.866i)10-s + (1.67 − 0.965i)11-s + (0.258 − 0.448i)14-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)20-s + (−0.500 − 1.86i)22-s − 1.00i·25-s + (−0.366 − 0.366i)28-s + (0.707 + 1.22i)29-s + (−0.866 + 1.5i)31-s + (0.965 − 0.258i)32-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (0.5 + 0.133i)7-s + (−0.707 + 0.707i)8-s + (−0.500 − 0.866i)10-s + (1.67 − 0.965i)11-s + (0.258 − 0.448i)14-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)20-s + (−0.500 − 1.86i)22-s − 1.00i·25-s + (−0.366 − 0.366i)28-s + (0.707 + 1.22i)29-s + (−0.866 + 1.5i)31-s + (0.965 − 0.258i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.370 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.370 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.700339845\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.700339845\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-0.5 - 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 59 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.86 + 0.5i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.813731767521998069212128514669, −8.374875841993555022261963025776, −6.93553957368096726080837164592, −6.11140706427783096517832429796, −5.39043950170534651249225898683, −4.70828893392109529575319335751, −3.83001846640959255791206407784, −3.00488362848851984340152916119, −1.71129099332832130864366308904, −1.16460416644912233229130136477,
1.50800330657816154851757514048, 2.67604987064960688685270688112, 3.95510401535467828059395678673, 4.36647179121525449452429474301, 5.47308205827717030307496672650, 6.17275011679719354234983655155, 6.78125502316049827651305751848, 7.38468674399473646198366808685, 8.137346885147345462425270856844, 9.147057973088083393062506384053