L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (0.5 + 0.133i)7-s + (−0.707 + 0.707i)8-s + (−0.500 − 0.866i)10-s + (1.67 − 0.965i)11-s + (0.258 − 0.448i)14-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)20-s + (−0.500 − 1.86i)22-s − 1.00i·25-s + (−0.366 − 0.366i)28-s + (0.707 + 1.22i)29-s + (−0.866 + 1.5i)31-s + (0.965 − 0.258i)32-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.707 − 0.707i)5-s + (0.5 + 0.133i)7-s + (−0.707 + 0.707i)8-s + (−0.500 − 0.866i)10-s + (1.67 − 0.965i)11-s + (0.258 − 0.448i)14-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)20-s + (−0.500 − 1.86i)22-s − 1.00i·25-s + (−0.366 − 0.366i)28-s + (0.707 + 1.22i)29-s + (−0.866 + 1.5i)31-s + (0.965 − 0.258i)32-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.370+0.929i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.370+0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
−0.370+0.929i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(2053,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), −0.370+0.929i)
|
Particular Values
L(21) |
≈ |
1.700339845 |
L(21) |
≈ |
1.700339845 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258+0.965i)T |
| 3 | 1 |
| 5 | 1+(−0.707+0.707i)T |
good | 7 | 1+(−0.5−0.133i)T+(0.866+0.5i)T2 |
| 11 | 1+(−1.67+0.965i)T+(0.5−0.866i)T2 |
| 13 | 1+(−0.866+0.5i)T2 |
| 17 | 1−iT2 |
| 19 | 1+T2 |
| 23 | 1+(0.866−0.5i)T2 |
| 29 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 31 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 37 | 1+iT2 |
| 41 | 1+(−0.5−0.866i)T2 |
| 43 | 1+(0.866+0.5i)T2 |
| 47 | 1+(0.866+0.5i)T2 |
| 53 | 1+(−1.22+1.22i)T−iT2 |
| 59 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.866−0.5i)T2 |
| 71 | 1+T2 |
| 73 | 1+(1.36+1.36i)T+iT2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(0.965+0.258i)T+(0.866+0.5i)T2 |
| 89 | 1−T2 |
| 97 | 1+(1.86+0.5i)T+(0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.813731767521998069212128514669, −8.374875841993555022261963025776, −6.93553957368096726080837164592, −6.11140706427783096517832429796, −5.39043950170534651249225898683, −4.70828893392109529575319335751, −3.83001846640959255791206407784, −3.00488362848851984340152916119, −1.71129099332832130864366308904, −1.16460416644912233229130136477,
1.50800330657816154851757514048, 2.67604987064960688685270688112, 3.95510401535467828059395678673, 4.36647179121525449452429474301, 5.47308205827717030307496672650, 6.17275011679719354234983655155, 6.78125502316049827651305751848, 7.38468674399473646198366808685, 8.137346885147345462425270856844, 9.147057973088083393062506384053