L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73i·17-s + 19-s + 0.999·20-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (1.5 + 0.866i)31-s + (0.499 + 0.866i)32-s + (1.49 + 0.866i)34-s + (0.5 − 0.866i)38-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73i·17-s + 19-s + 0.999·20-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (1.5 + 0.866i)31-s + (0.499 + 0.866i)32-s + (1.49 + 0.866i)34-s + (0.5 − 0.866i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.352561135\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.352561135\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.73iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.811558973847702002655833772939, −8.186860105875462530177872551970, −7.21109525321414142132101978870, −6.37538762640902366912605595907, −5.78625466329583375377506267025, −4.68556014356963110531476053953, −3.99993929063249794312464487497, −3.17829903633742274743160476213, −2.48135939208053609214986728750, −1.21172007572193496484057924199,
0.827728302549680570199567503576, 2.65501909914820034429238370499, 3.55801591570220950716833100703, 4.44139765229329629851185928633, 5.12441084845364472506472216577, 5.63689739952118966535027718403, 6.72186047110978722716552833667, 7.50192707701956675179681701891, 7.83742917416974922249155223262, 8.872271334701190448041472904085