L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.866 − 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 − 1.5i)13-s + (0.866 + 1.5i)14-s + (−0.5 + 0.866i)16-s + 19-s + (0.499 − 0.866i)20-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.866 − 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 − 1.5i)13-s + (0.866 + 1.5i)14-s + (−0.5 + 0.866i)16-s + 19-s + (0.499 − 0.866i)20-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984+0.173i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.984+0.173i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.984+0.173i)
|
Particular Values
L(21) |
≈ |
1.029013656 |
L(21) |
≈ |
1.029013656 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T+T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.571296513410206845909214755927, −7.86366843866841084614309041802, −7.27516490243461534720762930013, −6.93448063066746972123759387568, −5.80010589999963555904474513588, −5.22118609886935278902269246630, −4.34904785810865522909886921583, −3.31666941922939719615505666243, −2.03615670931660941890564309877, −0.76791504493148578925639947913,
1.53383108504825593926054481878, 2.00989816245952511287976353807, 2.97085189344275941098175467200, 4.29290507556378104956988255263, 4.95314746965196723847036818141, 5.52958942153002377649906685039, 6.65276122278699662168649065487, 7.80609273040622150595082547335, 8.250883407629305071405093070438, 9.184579715381157226212144828112