Properties

Label 2-3240-360.259-c0-0-9
Degree $2$
Conductor $3240$
Sign $0.984 + 0.173i$
Analytic cond. $1.61697$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.866 − 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 − 1.5i)13-s + (0.866 + 1.5i)14-s + (−0.5 + 0.866i)16-s + 19-s + (0.499 − 0.866i)20-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.866 − 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 − 1.5i)13-s + (0.866 + 1.5i)14-s + (−0.5 + 0.866i)16-s + 19-s + (0.499 − 0.866i)20-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $0.984 + 0.173i$
Analytic conductor: \(1.61697\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3240} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :0),\ 0.984 + 0.173i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.029013656\)
\(L(\frac12)\) \(\approx\) \(1.029013656\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 + (-0.5 - 0.866i)T \)
good7 \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T + T^{2} \)
23 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
29 \( 1 + (0.5 + 0.866i)T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + T + T^{2} \)
59 \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (0.5 + 0.866i)T^{2} \)
83 \( 1 + (0.5 + 0.866i)T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.571296513410206845909214755927, −7.86366843866841084614309041802, −7.27516490243461534720762930013, −6.93448063066746972123759387568, −5.80010589999963555904474513588, −5.22118609886935278902269246630, −4.34904785810865522909886921583, −3.31666941922939719615505666243, −2.03615670931660941890564309877, −0.76791504493148578925639947913, 1.53383108504825593926054481878, 2.00989816245952511287976353807, 2.97085189344275941098175467200, 4.29290507556378104956988255263, 4.95314746965196723847036818141, 5.52958942153002377649906685039, 6.65276122278699662168649065487, 7.80609273040622150595082547335, 8.250883407629305071405093070438, 9.184579715381157226212144828112

Graph of the $Z$-function along the critical line